TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. SAFETY</td>
<td>1</td>
</tr>
<tr>
<td>2.1 General</td>
<td>1</td>
</tr>
<tr>
<td>2.2 Installation and Handling</td>
<td>1</td>
</tr>
<tr>
<td>2.3 Fire and Explosion</td>
<td>1</td>
</tr>
<tr>
<td>2.4 Mechanical</td>
<td>2</td>
</tr>
<tr>
<td>2.5 Chemical</td>
<td>2</td>
</tr>
<tr>
<td>2.6 Noise</td>
<td>2</td>
</tr>
<tr>
<td>2.7 Electrical</td>
<td>2</td>
</tr>
<tr>
<td>2.8 First Aid For Electric Shock</td>
<td>3</td>
</tr>
<tr>
<td>3. GENERAL DESCRIPTION</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Generator Set Description and Identification</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Gas Engine</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Engine Electrical System</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Cooling System</td>
<td>5</td>
</tr>
<tr>
<td>3.5 Alternator</td>
<td>5</td>
</tr>
<tr>
<td>3.6 Baseframe</td>
<td>5</td>
</tr>
<tr>
<td>3.7 Vibration Isolation</td>
<td>5</td>
</tr>
<tr>
<td>3.8 Silencer and Exhaust System</td>
<td>5</td>
</tr>
<tr>
<td>3.9 Control System (Identification)</td>
<td>5</td>
</tr>
<tr>
<td>3.10 Output Circuit Breaker</td>
<td>5</td>
</tr>
<tr>
<td>4. INSTALLATION, HANDLING, TOWING AND STORAGE</td>
<td>5</td>
</tr>
<tr>
<td>4.1 General</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Enclosures</td>
<td>5</td>
</tr>
<tr>
<td>4.3 Moving the Generator Set</td>
<td>5</td>
</tr>
<tr>
<td>4.4 Location</td>
<td>6</td>
</tr>
<tr>
<td>4.5 Foundations and Vibration Isolation</td>
<td>7</td>
</tr>
<tr>
<td>4.6 Combustion Air Inlet</td>
<td>7</td>
</tr>
<tr>
<td>4.7 Cooling and Ventilation</td>
<td>7</td>
</tr>
<tr>
<td>4.8 Exhaust</td>
<td>8</td>
</tr>
<tr>
<td>4.9 Gas System</td>
<td>8</td>
</tr>
<tr>
<td>4.10 Fire Precautions</td>
<td>10</td>
</tr>
<tr>
<td>4.11 Starting Batteries</td>
<td>10</td>
</tr>
<tr>
<td>4.12 Electrical Connection</td>
<td>10</td>
</tr>
<tr>
<td>4.13 Acoustic Silencing</td>
<td>11</td>
</tr>
<tr>
<td>4.14 Storage</td>
<td>11</td>
</tr>
<tr>
<td>5. OPERATION</td>
<td>11</td>
</tr>
<tr>
<td>5.1 General</td>
<td>11</td>
</tr>
<tr>
<td>5.2 Pre-Start Checks (applicable to all control systems)</td>
<td>11</td>
</tr>
<tr>
<td>5.3 Initial Startup/Shutdown - Autostart Panel (2001, 4001, or 4001E Series)</td>
<td>12</td>
</tr>
<tr>
<td>5.4 Normal Manual Startup/Shutdown - Autostart Panel (2001, 4001 or 4001E Series)</td>
<td>13</td>
</tr>
<tr>
<td>5.5 Automatic Startup/Shutdown - Autostart Panel (2001, 4001 or 4001E Series)</td>
<td>13</td>
</tr>
<tr>
<td>6. GENERATOR SET MAINTENANCE</td>
<td>13</td>
</tr>
<tr>
<td>6.1 General</td>
<td>14</td>
</tr>
<tr>
<td>6.2 Preventative Maintenance</td>
<td>14</td>
</tr>
<tr>
<td>6.3 Removal of Engine and/or Alternator</td>
<td>14</td>
</tr>
<tr>
<td>7. ENGINE DESCRIPTION AND MAINTENANCE</td>
<td>14</td>
</tr>
<tr>
<td>7.1 Engine Description</td>
<td>14</td>
</tr>
<tr>
<td>7.2 Engine Maintenance</td>
<td>15</td>
</tr>
<tr>
<td>7.3 Radiator Maintenance</td>
<td>15</td>
</tr>
<tr>
<td>8. ALTERNATOR DESCRIPTION AND MAINTENANCE</td>
<td>16</td>
</tr>
<tr>
<td>8.1 Alternator Description</td>
<td>16</td>
</tr>
<tr>
<td>8.2 Alternator Maintenance</td>
<td>16</td>
</tr>
</tbody>
</table>
9. CONTROL SYSTEM DESCRIPTION AND TROUBLE SHOOTING ...18
 9.1 Control System Description and Identification ...18
 9.2 Functional Description 2001, 4001 and 4001E Series Control Systems ...20
 9.3 Control System Options and Upgrades ...25
 9.4 Control System Fault Finding/Trouble Shooting Guide ...28
 9.5 Load Transfer Panels ..32
 9.6 Engine Interface Module Description ..35
 9.7 Output Circuit Breaker Description ...35

10. BATTERY DESCRIPTION AND MAINTENANCE ..36
 10.1 Battery Theory ...36
 10.2 Battery Maintenance ...36
 10.3 Charging the Battery ..36
 10.4 Battery Charging System Fault Finding/Trouble Shooting Chart ..37
 10.5 Jump Starting Procedures ...38

HAZARD LABEL LEGEND ...1

INDEX ...40
1. INTRODUCTION

This generator set is one of a family of industrial gas generator sets designed and tested ready to be connected to its gas fuel supply. This connection should be made by an authorized person who is approved by local gas standard’s authority.

This Technical Operation and Maintenance Manual has been prepared to assist in maintenance and operation of the generator set. Using this manual in conjunction with the Engine Manual, Alternator Manual, and following the local regulations for gas supplies, will help to ensure that the generator set keeps operating at maximum performance and efficiency for a long life. Please note that in dirty or dusty environments more attention must be paid to frequent servicing to keep the set running properly.

Always ensure that adjustments, repairs and installations are done by personnel who are authorized to do the work and have been properly trained and certified.

Every generator set is uniquely defined by a model number and serial number indicated on a rating plate generally affixed to the alternator housing. This information is required when ordering spare parts or when service or warranty work is required. See Section 3.1 for further information.

2. SAFETY

2.1 General

The generator set is designed to be safe when used in the correct manner. Responsibility for safety, however, rests with the personnel who install, use and maintain the set. The following safety precautions, if followed, will minimize the possibility of accidents. Before performing any procedure or operating technique, it is up to the user to ensure that it is safe. The generator set should only be operated by personnel who are authorized, trained and certified.

WARNING:

! Read and understand all safety precautions and warnings before operating or performing maintenance on the generator set.

! Failure to follow the instructions, procedures, and safety precautions in this manual may increase the possibility of accidents and injuries.

! Never start the generator set unless it is safe to do so.

! Do not attempt to operate the generator set with a known unsafe condition.

! If the generator set is unsafe, fit danger notices and disconnect the battery negative (-) lead so that it cannot be started until the condition is corrected.

! Disconnect the battery negative (-) lead prior to attempting any repairs or cleaning inside the enclosure, if equipped.

! Install and operate this generator set only in full compliance with relevant National, Local, or Federal Codes, Standards or other requirements.

2.2 Installation and Handling

Chapter 4 of this manual covers procedures for installation and handling of generator sets. That chapter should be read before installing the generator set, moving/lifting the generator set. The following safety precautions should be noted:

WARNING:

! Make electrical connections and gas connections in compliance with relevant Electrical and Gas Codes, Standards or other requirements. This includes requirements for grounding, ground/earth faults and gaseous fuel systems.

! Gaseous fuel systems must be in compliance with all relevant Codes, Standards and other requirements concerned with storage, piping, handling, installation and use of these hazardous fuels. The complete fuel system must be purged and leak tested before being put into service with further checks for leaks to be conducted thereafter on a regular basis. Any leaks found must be corrected immediately.

! Engine exhaust emissions are hazardous to personnel. The exhaust for all indoor generator sets must be piped outdoors via leak-free piping in compliance with relevant Codes, Standards and other requirements. Ensure hot exhaust silencers, piping and turbochargers, if equipped, are clear of combustible material and are guarded for personnel protection per safety requirements. Ensure that fumes from the exhaust outlet will not be a hazard.

! Never lift the generator set by attaching to the engine or alternator lifting lugs. Use a sling with a “spreader bar” connected to the baseframe.

! Ensure the lifting rigging and supporting structure is in good condition and has a capacity suitable for the load.

! Keep all personnel away from the generator set when it is suspended.

! Make sure all personnel are out of the generator set enclosure or container, if equipped, before closing and latching enclosure doors.

! Do not install or use the generator set in any classification of hazardous environment unless it has been specifically designed for that environment.

2.3 Fire and Explosion

Fuels and fumes associated with generator sets can be flammable and potentially explosive. Proper care in handling these materials can dramatically limit the risk of fire or explosion. However, safety dictates that fully charged BC and ABC fire extinguishers are kept on hand. Personnel must know how to operate them.

WARNING:

! Gaseous fuels are highly explosive. Ensure the generator set room is properly ventilated according to gas regulations. Use of a suitable leak detection system is also recommended.

! Natural gas is lighter than air and as result tends to settle in high places. LP gas on the other hand is heavier than air and will therefore settle in low areas. Extreme caution is therefore required when entering such areas.

! Keep the room, the floor and the generator set clean. When spills of oil, battery electrolyte or coolant occur, they should be cleaned up immediately.

! Never store flammable liquids near the engine.

! Store oily rags in covered metal containers.

! Do not smoke or allow sparks, flames or other sources of ignition around gas pipes or batteries. Fuel gases are explosive. Hydrogen gas generated by charging batteries is also explosive.

! Turn off or disconnect the power to the battery charger before making or breaking connections with the battery or before breaking any gas pipe or line.

! Keep grounded conductive objects, such as tools, away from exposed live electrical parts, such as terminals, to avoid arcing. Sparks and arcing might ignite gas or vapors.

! Do not attempt to operate the generator set with any known gas leaks in the fuel system.
The excessive build-up of unburned gases in the exhaust system can create a potentially explosive condition. This build-up can occur during such operations as repeated failed start attempts, air flap valve testing, or hot engine shutdown. Open exhaust system purge plugs, if equipped, and allow the gases to dissipate before attempting to restart the generator set.

2.4 Mechanical

The generator set is designed with guards for protection from moving parts. Care must still be taken to protect personnel and equipment from other mechanical hazards when working around the generator set.

WARNING:

! Do not attempt to operate the generator set with safety guards removed. While the generator set is running do not attempt to reach under or around the guards to do maintenance or for any other reason.

! Keep hands, arms, long hair, loose clothing and jewelry away from pulleys, belts and other moving parts.

Attention: Some moving parts can not be seen clearly when the set is running.

! Keep access doors on enclosures, if equipped, closed and locked when not required to be open.

! Avoid contact with hot oil, hot coolant, hot exhaust gases, hot surfaces and sharp edges and corners.

! Wear protective clothing including gloves and hat when working around the generator set.

! Do not remove the radiator filler cap until the coolant has cooled. Then loosen the cap slowly to relieve any excess pressure before removing the cap completely.

! Ethyl Ether starting aids are not recommended. They will reduce the efficient working life of the engine.

2.5 Chemical

Gas, oils, coolants, lubricants and battery electrolyte used in this generator set are typical of the industry. However, they can be hazardous to personnel if not treated properly.

WARNING:

! Do not swallow or have skin contact with oil, coolant, lubricants or battery electrolyte. If swallowed, seek medical treatment immediately. For skin contact, wash with soap and water.

! Do not wear clothing that has been contaminated by oils or lubricants.

! Wear an acid resistant apron and face shield or goggles when servicing the battery. If electrolyte is spilled on skin or clothing, flush immediately with large quantities of water.

2.6 Noise

Generator sets that are not equipped with sound attenuating enclosures can produce noise levels in excess of 105 dBA. Prolonged exposure to noise levels above 85 dBA is hazardous to hearing.

WARNING:

! Ear protection must be worn when operating or working around an operating generator set.

2.7 Electrical

Safe and efficient operation of electrical equipment can be achieved only if the equipment is correctly installed, operated and maintained.

WARNING:

! The generator set must be connected to the load only by trained and qualified electricians who are authorized to do so, and in compliance with relevant Electrical Codes, Standards and other regulations. Where required, their work should be inspected and accepted by the inspection agency prior to operating the generator set.

! Ensure the generator set is effectively grounded/earthed in accordance with all relevant regulations prior to operation.

! The generator set should be shutdown with the battery negative (-) terminal disconnected prior to attempting to connect or disconnect load connections.

! Do not attempt to connect or disconnect load connections while standing in water or on wet or soggy ground.

! Do not touch electrically energized parts of the generator set and/or interconnecting cables or conductors with any part of the body or with any non insulated conductive object.

! Replace the generator set terminal box cover as soon as connection or disconnection of the load cables is complete. Do not operate the generator set without the cover securely in place.

! Connect the generator set only to loads and/or electrical systems that are compatible with its electrical characteristics and that are within its rated capacity.

! Be sure all electrical power is disconnected from electrical equipment being serviced.

! Keep all electrical equipment clean and dry. Replace any wiring where the insulation is cracked, cut, abraded or otherwise degraded. Replace terminals that are worn, discolored or corroded. Keep terminals clean and tight.

! Insulate all connections and disconnected wires.

! Use only Class BC or Class ABC extinguishers on electrical fires.
2.8 First Aid For Electric Shock

WARNING:

! Do not touch the victim's skin with bare hands until the source of electricity has been turned off.

• Switch off power, if possible.
• Otherwise pull the plug or pull the cable away from the victim.
• If this is not possible, stand on dry insulating material and pull the victim clear of the conductor, preferably using insulated material such as dry wood.
• If victim is breathing, turn the victim into the recovery position described below.
• If victim is unconscious, perform resuscitation as required:

OPEN THE AIRWAY:

1. Tilt the victim's head back and lift the chin upwards.
2. Remove objects from the mouth or throat (including false teeth, tobacco, or chewing gum).

BREATHING:

1. Check that the victim is breathing by looking, listening and feeling for the breath.

CIRCULATION:

1. Check for pulse in the victim's neck.

IF NO BREATHING BUT PULSE IS PRESENT:

1. Pinch the victim's nose firmly.
2. Take a deep breath and seal your lips around the victim's lips.
3. Blow slowly into the mouth watching for the chest to rise. Let the chest fall completely. Give breaths at a rate of 10 per minute.
4. If the victim must be left to get help, give 10 breaths first and then return quickly and continue.
5. Check for pulse after every 10 breaths.
6. When breathing restarts, place the victim into the recovery position described later in this section.

IF NO BREATHING AND NO PULSE:

1. Call or telephone for medical help.
2. Give two breaths and start chest compression as follows:
3. Place heel of hand 2 fingers breadth above ribcage/breastbone junction.
4. Place other hand on top and interlock fingers.
5. Keeping arms straight, press down 4-5 cm (1.5-2 inch) 15 times at a rate of 80 per minute.
6. Repeat cycle (2 breaths, 15 compressions) until medical help takes over.
7. If condition improves, confirm pulse and continue with breaths. Check for pulse after every 10 breaths.
8. When breathing restarts, place the victim into the recovery position described below.

RECOVERY POSITION:

1. Turn the victim onto the side.
2. Keep the head tilted with the jaw forward to maintain the open airway.
3. Make sure the victim cannot roll forwards or backwards.
4. Check for breathing and pulse regularly. If either stops, proceed as above.

WARNING:

! Do not give liquids until victim is conscious.
Figure 3.1: Typical Generator Set Configuration
3. GENERAL DESCRIPTION

3.1 Generator Set Description and Identification

This generator set has been designed as a complete package to provide superior performance and reliability. Figure 3.1 identifies the major components. This figure is of a typical generator set. However, every set will be slightly different due to the size and configuration of the major components. This section briefly describes the parts of the generator set. Further information is provided in later sections of this manual.

Each generator set is provided with a Rating Label (item 1) generally affixed to the alternator housing. This label contains the information needed to identify the generator set and its operating characteristics. This information includes, but is not limited to, the model number, serial number, output characteristics such as voltage, phase and frequency, output rating in kVA and kW, and rating type (basis of the rating). For reference, this information is repeated on the Technical Data Sheet provided with this manual. The model and serial numbers uniquely identify the generator set and are needed when ordering spare parts or obtaining service or warranty work for the set.

3.2 Gas Engine

The gas engine powering the generator set (item 2) has been chosen for its reliability. The engine is of the 4 stroke- spark ignition type and is fitted with all accessories to provide a reliable power supply. These accessories include, among others, a cartridge type dry air filter (item 3), a turbocharger fitted on some engines (item 4), and an electronic close control engine speed governor (item 5). The generator set is supplied with a gas train made up from a gas regulator, automatic gas shut-off valve, gas carburetor and throttle body.

3.3 Engine Electrical System

The engine electrical system is negative ground/earth and either 12 or 24 volts DC depending on the size of the set. This system includes an electric engine starter (item 6), battery and battery rack (item 7) which may also be located on the floor next to the set for some of the larger generator sets, and a battery charging alternator (item 8). Most sets are provided with lead-acid batteries which are discussed more fully in Section 10, however other types of batteries may be fitted if they had been specified.

3.4 Cooling System

The engine cooling system is comprised of a radiator (item 9), a high capacity pusher fan and a thermostat. The alternator has its own internal fan to cool the alternator components. Note that the air is "pushed" through the radiator so that the cooling air is drawn past the alternator, then past the engine and finally through the radiator.

3.5 Alternator

The output electrical power is normally produced by a screen protected and drip-proof, self-exciting, self-regulating, brushless alternator (item 10) fine tuned to the output of this generator set. Mounted on top of the alternator is a sheet steel terminal box (item 11).

3.6 Baseframe

The engine and alternator are coupled together and mounted on a heavy duty steel baseframe (item 12).

3.7 Vibration Isolation

The generator set is fitted with vibration isolators (item 13) which are designed to reduce engine vibration being transmitted to the foundation on which the generator set is mounted. These isolators are fitted between the engine/alternator feet and the baseframe. Alternately, on larger models the engine/alternator is rigidly mounted on the baseframe and the vibration isolators are supplied loose to be fitted between the baseframe and the foundation.

3.8 Silencer and Exhaust System

An exhaust silencer system can be provided loose for installation with open generator sets. The silencer and exhaust system reduce the noise emission from the engine and can direct exhaust gases to safe outlets.

3.9 Control System (Identification)

One of several types of control systems and panels (item 14) may be fitted to control the operation and output of the set and to protect the set from possible malfunctions. Section 9 of this manual provides detailed information on these systems and will aid in identification of the control system fitted on the generator set.

3.10 Output Circuit Breaker

To protect the alternator, a suitably rated circuit breaker (item 15) selected for the generator set model and output rating is supplied mounted in a steel enclosure. In some cases the output circuit breaker may be incorporated in the automatic transfer system or control panel.

4. INSTALLATION, HANDLING, TOWING AND STORAGE

4.1 General

This section discusses factors important in the effective and safe installation of the generator set. Further information is available in the Generator Set Installation Manual which is available upon request.

4.2 Enclosures

Installation and handling is greatly simplified when the generator set has been equipped with an enclosure. Two basic types may be fitted. The first type is a close fitting enclosure. This may be a weatherproof version or designed for sound attenuation. The other enclosure type is a walk-in type container, similar to a shipping container. It may also be weatherproof or sound attenuated. These enclosures provide a self contained generator set system that is easily transportable and requires minimal installation. They also automatically give protection from the elements and protection from unauthorized access.

WARNING:
- Make sure all personnel are out of the enclosure or container, if equipped, before closing and latching enclosure doors.
- Before closing enclosure or enclosing doors, ensure all obstructions (especially hands and fingers) are clear to prevent damage or injury.

If a generator set which is fitted with an enclosure is installed inside a building, adequate fresh cooling air must be provided and the engine exhaust and hot coolant air exhaust must be ducted outside the building. The ducting and exhaust pipework must be designed to minimize back pressure which would have a detrimental effect on generator set performance.

4.3 Moving the Generator Set

The generator set baseframe is specifically designed for ease of moving the set. Improper handling can seriously damage components.

Using a forklift, the generator set can be lifted or for minor location adjustments carefully pushed/pulled by the baseframe. If pushing, do not push the baseframe directly with the fork. Always use wood between the forks and the baseframe to spread the load and prevent damage.

WARNING:
- Never lift the generator set by attaching to the engine or alternator lifting lugs.
- Ensure the lifting rigging and supporting structure is in good condition and is suitably rated.
- Keep all personnel away from the generator set when it is suspended.

For ease of lifting, open sets and sets fitted with an enclosure have lift points provided on the baseframe as standard.
For walk-in type enclosures, lifting attachment is by means of corner fittings on the enclosure. Generator sets in these enclosures are fitted with restraining angles to rigidly attach the engine and alternator to the baseframe during transit. Ensure the restraints are fitted securely in place before moving the generator set. Once the generator set has been moved these restraints must be removed before attempting to operate the set.

Generator sets to be air lifted by helicopter should be lifted by sling.

4.4 Location

Selecting a location for the generator set can be the most important part of any installation procedure. The following factors are important in determining the location:

- Adequate ventilation.
- Protection from the elements such as rain, snow, sleet, wind driven precipitation, flood water, direct sunlight, freezing temperatures, or excessive heat.
- Protection from exposure to airborne contaminants such as abrasive or conductive dust, lint, smoke, oil mist, vapors, engine exhaust fumes or other contaminants.
- Protection from impact from falling objects such as trees or poles, or from motor vehicles or lift trucks.
- Clearance around the generator set for cooling and access for service: at least 1 meter (3.3 feet) around the set and at least 2 meters (6.6 feet) headroom above the set.
- Access to move the entire generator set into the room. Air inlet and outlet vents can often be made removable to provide an access point.
- Limited access to unauthorized personnel.

If it is necessary to locate the generator set outside of the building, the generator set should be enclosed in a weatherproof enclosure or container-type housing which is available for all sets. These enclosures are also useful for temporary installations inside or outside the building.
4.5 Foundations and Vibration Isolation

The generator set is shipped assembled on a rigid baseframe that precisely aligns the alternator and engine and needs only be bolted down to a suitably prepared surface (see Figure 4.2).

4.5.1 Foundation: A reinforced concrete pad makes the best foundation for the generator set. It provides a rigid support to prevent deflection and vibration. Typically the foundation should be 150 mm to 200 mm (6 to 8 inches) deep and at least as wide and long as the generator set. The ground or floor below the foundation should be properly prepared and should be structurally suited to carry the weight of the foundation pad and the generator set. (If the generator set is to be installed above the ground floor, the building structure must be able to support the weight of the generator set, any fuel storage and accessories.) Relevant building codes should be consulted and complied with. If the floor may be wet from time to time, such as in a boiler room, the pad should be raised above the floor. This will provide a dry footing for the generator set and for those who connect, service or operate it. It will also minimize corrosive action on the baseframe.

4.5.2 Vibration Isolation: To minimize engine vibrations being transmitted to the building, the generator set is fitted with vibration isolators. On small and medium sized sets these isolators are fitted between the engine/alternator feet and the baseframe. This allows the frame to be rigidly bolted to the foundation. On larger sets the coupled engine/alternator is rigidly attached to the baseframe and the vibration isolators are supplied loose for fitting between the baseframe and the foundation. In all cases the sets should be securely bolted to the ground (either through the baseframe or through the vibration isolators) to prevent movement.

Vibration isolation is also required between the generator set and its external connections. This is achieved by use of flexible connections in the fuel lines, exhaust system, radiator air discharge duct, electrical conduit for control and power cables and other externally connected support systems (see Figure 4.2).

4.6 Combustion Air Inlet

Air for engine combustion must be clean and as cool as possible. Normally this air can be drawn from the area surrounding the generator set via the engine mounted air filter. However, in some cases due to dust, dirt, or heat, the air around the set is unsuitable. In these cases an inlet duct should be fitted. This duct should run from the source of clean air (outside the building, another room, etc.) to the engine mounted air filter. Do not remove the air filter and mount it at a remote location as this can increase the possibility of dirt leaking through the ductwork and into the engine inlet. To ensure that this type of installation will not have a detrimental effect on the operation of the generator set, the design of the inlet duct should be approved by the factory.

4.7 Cooling and Ventilation

The engine, alternator, and exhaust piping radiate heat which can result in a temperature high enough to adversely affect the performance of the generator set. It is therefore important that adequate ventilation is provided to keep the engine and alternator cool. Proper air flow, as shown in Figure 4.3, requires that the air comes in at the alternator end of the set, passes over the engine, through the radiator and out of the room via a flexible exhaust duct. Without the ducting of the hot air outside the room, the fan will tend to draw that hot air around and back through the radiator, reducing the cooling effectiveness.

The air inlet and exit openings should be large enough to ensure free flow of air into and out of the room. As a rough guide the openings should each be at least 1.5 times the area of the radiator core.

Both the inlet and exit openings should have louvres for weather protection. These may be fixed but preferably should be movable in cold climates so that while the generator set is not operating the louvres can be closed. This will allow the room to be kept warm which will assist starting and load acceptance. For automatic starting generator sets, if the louvres are movable they must be automatically operated. They should be programmed to open immediately upon starting the engine. The force of radiator air should not be depended upon to open the louvre vanes unless the system has been specifically designed for this.

When a remote radiator or heat exchanger cooling system is used, the radiated heat from the generator set must still be removed from the room.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Air Inlet Opening</td>
</tr>
<tr>
<td>2.</td>
<td>Air Exit Opening</td>
</tr>
</tbody>
</table>

Figure 4.3: Air Ventilation
4.8 Exhaust

The purpose of the engine exhaust system is to direct the exhaust outside to a location and height where the fumes and odors will not become an annoyance or hazard, and to reduce noise. A suitable exhaust silencer must be incorporated into the exhaust piping to reduce the noise level from the engine. It can be fitted either inside or outside the building (see Figure 4.4). Generator sets fitted with an enclosure include an exhaust system within the enclosure.

Open generator sets are supplied as standard with a stub pipe and can be supplied with a loose level 1 class silencer. An optional “Overhead Mounting Kit” includes a bend, silencer support brackets and a bellows. An optional “Silencer Installation Kit” includes the wall sleeve, bend and rain cap for directing the exhaust outside (see Figure 4.4). In all cases, the straight sections of pipe and screw rods for the support brackets are supplied by the customer.

WARNING:

- Engine exhaust emissions are hazardous to personnel.
- The engine exhaust for all indoor generator sets must be piped outdoors via leak-free piping in compliance with relevant Codes, Standards and other requirements.
- Ensure hot exhaust silencers, piping and turbochargers, if fitted, are clear of combustible material and are guarded for personnel protection per safety requirements.
- Ensure that fumes from the exhaust outlet will not be a hazard.

In designing an exhaust system, the primary consideration is to not exceed the allowable back pressure permitted by the engine manufacturer. Excessive back pressure seriously affects engine output, durability and fuel consumption. To limit the back pressure the exhaust piping should be as short and straight as possible. Any required bends should have a curve radius of at least 1.5 times the inside diameter of the pipe. Any designed exhaust extensions over 3 meters should be approved by the factory.

Other exhaust design criteria are as follows:

- Exhaust components including turbochargers can be very hot and must be guarded where they could be accidentally touched.
- A flexible connection between the exhaust manifold and the piping system should be used to prevent transmission of engine vibration to the piping and the building and to allow for thermal expansion and any slight misalignment of the piping. (See Figure 4.2)
- Ensure that the silencer and all pipes are well supported to limit strain on the connectors which could result in cracks or leaks.
- Exhaust system components located within the generator room should be insulated to reduce heat radiation and noise levels. Pipes and the silencer, whether located inside or outside the building, should be located well clear of any combustible material.

- Any long horizontal or vertical piping should slope away from the engine and include drain traps at their lowest points to prevent water from reaching the engine or silencer.
- It is recommended that the silencer installation include purge plugs for venting of the exhaust system in the event of difficult starting. The plug should be located adjacent to the exhaust flange and positioned to allow access.
- Where the pipe goes through a wall there should be a sleeve in the opening to absorb vibration and isolate combustible material from the hot pipes (See Figure 4.4). There may also be an expansion joint in the pipe to compensate for lengthwise thermal expansion or contraction.
- The outer end of the exhaust pipe, if horizontal, should be cut at 60° to the horizontal or should be fitted with a rain hood or cap, if vertical, to prevent rain or snow from entering the exhaust system.
- The exhaust pipe must not be connected to exhausts from other generator sets or other equipment, such as a furnace or boiler.

4.9 Gas System

The gas system for the generator set must be capable of delivering a clean and continuous supply of gas to the engine that will ensure instant availability of fuel to facilitate starting and keep the engine operating. In some cases gaseous fueled generators can be fueled either with natural gas or liquefied propane gas (LP). Local gas codes regulating the installation of such gas supply systems vary widely, and therefore, local gas distributors or installers must be consulted when installing such systems. It is the responsibility of the installer to ensure that all applicable regulations and codes are complied with when installing a gas supply system for use by a generator.

Gaseous fuel systems must be in compliance with all relevant codes, standards and other requirements concerned with the storage, piping, handling, installation and use of these hazardous fuels. It is also important that the generator set room is properly ventilated according to gas regulations. Use of a suitable leak detection system is also recommended.

In most cases gas generators will be supplied with a factory fitted fuel system. This will comprise of components that will enable operation on one gaseous fuel type, such as natural gas, LP vapor or LP liquid. Some gas generators are also available with dual fuel systems that will allow operation on either natural gas and LP vapor or natural gas and LP liquid. These factory fitted fuel system components must be considered as only part of an overall gas supply system. The installer is again responsible for ensuring that the complete fuel supply system is compliant with all applicable regulations and codes.
suited for use with smaller engines. As a result care should taken in matching LP storage tank size for vapor withdrawal systems and generator size.

As with the natural gas system the flow of LP vapor supplied to the generator gas connection point is controlled by a solenoid shut-off valve. On generator operation, this allows gas to flow through the generator mounted secondary regulator to the generator carburetor. The solenoid shut-off valve automatically cuts-off gas flow during generator shut-down. The fuel supply is also sealed off within the carburetor when the generator is stopped.

4.9.3 LP Liquid Fuel System: This type of system again utilizes LP fuel but with liquid withdrawal instead of vapor withdrawal as previously discussed. Liquid LP is delivered directly to the generator where it passes through a fuel shut-off valve (typically operated via the engine manifold vacuum) to a ‘vaporizer-regulator’. The vaporizer-regulator vaporizes the LP liquid fuel (using engine coolant as the heat source) and provides a regulated LP vapor supply to the generator carburetor. A typical system is illustrated in Figure 4.7.

4.9.4 Dual Fuel Systems: These systems allow operation on either natural gas and LP vapor or natural gas and LP liquid. Such systems are useful where there is a possibility of failure of the piped natural gas supply or where focused gas tariffs make generator operation on natural gas excessively costly during peak tariff periods. These dual fuel systems are factory fitted and provide for automatic changeover from natural gas operation to LP vapor or LP liquid operation.

Figure 4.5: Typical Natural Gas Fuel Supply System

Figure 4.6: Typical LP Vapor Fuel Supply System

Figure 4.7: Typical LP Liquid Gas Fuel Supply System

Figure 4.8: Typical Natural Gas/LP Vapor Dual Fuel System

Figure 4.8 shows a typical natural gas / LP vapor dual fuel system. The natural gas supply pressure is monitored by a low pressure switch. When this supply pressure drops below an adjustable threshold level the LP vapor solenoid shut-off valve is opened and the natural gas solenoid shut-off is closed. The LP vapor then flows through a dedicated regulator to the engine carburetor.
4.11 Starting Batteries

WARNING: Do not smoke or allow sparks, flames or other sources of ignition around batteries. Hydrogen gas generated by charging batteries is explosive.

The starting batteries should be located as close as possible to the generator set while still being accessible for servicing. This will prevent electrical losses from long cables that could impact on the engine starting capability of the batteries. See Section 4.10 Fire Precautions.

4.12 Electrical Connection

On site electrical installation will generally consist only of connecting up the site load to the generator set output terminals. Only fully qualified and experienced electrical technicians should carry out electrical installation, service and repair work.

WARNING: Make electrical connections in compliance with relevant Electrical Codes, Standards or other requirements. This includes requirements about grounding and ground/earth faults.

4.12.1 Cabling: Due to movement of generator sets on their vibration mounts, the electrical connection to the set should be made with flexible cable. This will prevent transmission of vibrations and possible damage to the alternator or circuit breaker terminals. If flexible cabling can not be used throughout the installation then a link box should be installed close to the set with a flexible connection to the set.

The cable should be protected by laying it in a duct or cable tray. However, the duct or tray should never be rigidly connected to the generator set. When bending cable, reference must be made to the recommended minimum bending radius.

The cable must be suitable for the output voltage of the generator set and the rated current of the set. In determining the size, allowances should be made for ambient temperature, method of installation, proximity of other cables, etc. When single core cables are used the gland plates must be of non-ferrous material such as aluminum, brass or a non-metallic material such as tufnol. Alternatively slots can be cut between gland holes of cables to prevent circulating (eddy) currents in magnetic gland plates.

All connections should be carefully checked for integrity. Phase rotation must be checked for compatibility with the installation. This is vitally important when connection is made to an automatic transfer switch, or if the machine is to be paralleled.

4.12.2 Protection: The cables connecting the generator set with the distribution system are protected by means of a circuit breaker to automatically disconnect the set in case of overload or short circuit.

4.12.3 Loading: When planning the electrical distribution system it is important to ensure that a balanced load is presented to the generator set. If loading on one phase is substantially higher than the other phases it will cause overheating in the alternator windings, imbalance in the phase to phase output voltage and possible damage to sensitive 3 phase equipment connected to the system. Ensure that no individual phase current exceeds the current rating of the generator set. For connection to an existing distribution system, it may be necessary to reorganize the distribution system to ensure these loading factors are met.

4.12.4 Power Factor: The power factor (cos Φ) of the connected load should be determined. Power factors below 0.8 lagging (inductive) can overload the generator. The set will provide its kilowatt rating and operate satisfactorily from 0.8 lagging to unity power factor (1.0).

Particular attention must be given to installations with automatic or manual power factor correction equipment such as capacitors to ensure that a leading power factor is never present. This will lead to voltage instability and may result in damaging overvoltages. Generally, whenever the generator set is supplying the load any power factor correction equipment should be switched off.

4.12.5 Grounding Requirements: Regulations vary for different locations. The frame of the generator set must be positively connected to an earth ground. Since the set is mounted on vibration isolators, the ground connection must be flexible to avoid possible breakage due to vibration. On the majority of self contained sets the ground connection is located inside the circuit breaker box.

Ground connection cables or straps should have at least full load current carrying capacity and meet applicable regulations.

4.12.6 Alternator Reconnection: Most alternators can be reconnected to suit different output voltages. The reconnection procedures are given in the Alternator Manual. Ensure that all
5. OPERATION

5.1 General

The generator set is equipped with an advanced electronic control system. This will be one of a range of systems such as a 2001, 4001, 4001E or ACCESS 4000 control system. See Section 9 of this manual to identify which system is fitted on the generator set and for a functional description of each. (If your generator set is equipped with an ACCESS 4000 control system, a separate section will be included in your manual pack.)

These control systems allow the operator to manually or automatically control the generator set. They have protection circuits to sound an optional alarm and even shutdown the set if problems occur. Details of the capabilities of each system are contained in Section 9.

The following procedures detail the steps required to prepare the set for operation, start and stop it for the first time after installation, and start and stop it normally. Section 5.2, Pre-Start Checks are applicable with all control systems. Section 5.3, 5.4 and 5.5 cover operation of the Autostart Control Systems (2001, 4001 and 4001E Series).

5.2 Pre-Start Checks (applicable to all control systems)

The following checks should be performed prior to starting the generator set:

WARNING:

! Ear protection must be worn when operating or working around an operating generator set.

4.12.7 Parallel Running: Extra equipment must be fitted for the standard generator sets to be operated in parallel with other generator sets or with mains power.

4.12.8 Insulation Test: Before starting the generator set after installation, test the insulation resistance of the windings. The Automatic Voltage Regulator (AVR) should be disconnected and the rotating diodes either shorted out with temporary links or disconnected. Any control wiring must also be disconnected.

A 500V Megger or similar instrument should be used. Disconnect any earthing conductor connected between neutral and earth and megger an output terminal to earth. The insulation resistance should be in excess of 5MΩ to earth. Should the insulation resistance be less than 5MΩ the winding must be dried out. See the Alternator Manual for procedures.

4.13 Acoustic Silencing

Control of generator set noise is becoming very important in most installations. There is a range of options available to control the noise level.

WARNING:

! Exhaust Silencers: As discussed in Section 4.8 the exhaust silencer will decrease sound levels from the engine. Varying degrees of sound attenuation are available from different types of silencers. These levels are often described by terms such as industrial, residential, critical or supercritical.

4.13.3 Other Sound Attenuation: For installations in buildings there are other types of equipment such as acoustic louvers, splitter vents and fan silencers, as well as sound absorbing wall coverings, that can be used to reduce the noise levels of generator sets.

4.14 Storage

Long term storage can have detrimental effects on both the engine and alternator. These effects can be minimized by properly preparing and storing the generator set.

4.14.1 Engine Storage: The engine should be put through an engine "preservation" procedure that includes cleaning the engine and replacing all the fluids with new or preserving fluids. See the Engine Manual for the proper procedure.

4.14.2 Alternator Storage: When an alternator is in storage, moisture tends to condense in the windings. To minimize condensation, store the generator set in a dry storage area. If possible use space heaters to keep the windings dry.

After removing the generator set from storage, perform an insulation check as discussed in Section 4.12.8. If the readings are lower than prior to storage, it may be necessary to dry out the windings. See the Alternator Manual for procedures.

If the megger reading is below 1MΩ after drying, the insulation has deteriorated and should be reconditioned.

4.14.3 Battery Storage: While the battery is stored, it should receive a refreshing charge every 12 weeks (8 weeks in a tropical climate) up to a fully charged condition.
5. Start: Ensure the Emergency Stop Pushbutton and any remote Stop Pushbuttons are released. Turn the Control Switch to “RUN”.

The engine will automatically crank up to 3 times or until the engine fires. If the engine does not fire, the control system locks-out on “FAIL TO START” and illuminates a fault lamp on the control panel. If this happens refer to the trouble shooting guide in Section 9 or the Engine Manual to determine the cause of failure to start.

WARNING:

! Unburned fuel gases can build-up in the exhaust system after multiple failed attempted starts. Unscrew the plugs on the exhaust outlet elbows or stub pipes and allow the unburned fuel to dissipate. Once all signs of unburned fuel have disappeared and any other problems causing the failure to start have been rectified, replace the plugs and repeat the cranking procedure.

WHEN ENGINE HAS STARTED

6. After approximately 1 minute, shutdown the generator set by pressing the Emergency Stop Pushbutton or by turning the Control Switch to “STOP”. Remove the radiator cap and wait 5 minutes for the system to settle and any trapped air to escape. Re-check the coolant level and refill as necessary.

Note:

- A newly filled coolant system can have air locks that must be cleared by running the engine for a short time and the system refilled prior to extended running of the engine.

7. Restart the engine following the procedures in step 5 above.

8. Check for any abnormal noise or vibration.

9. Check for fluid leakage or leaks in the exhaust system.

10. Check the control panel for indications of abnormal operation, particularly abnormally high temperature or abnormally low oil pressure. The oil pressure should be in the normal range within about 10 seconds of starting.

11. Check the control panel for output voltage and frequency. The voltage is factory set and should indicate the rated voltage. The no load frequency is approximately 52 Hz for 50 Hz units and approximately 62 Hz for 60 Hz units. Adjustments should only be carried out by a qualified technician.

Three means of voltage adjustment are available:-

- Fine adjustment is achieved by varying the setting of a speed Potentiometer on the control panel, if fitted.
- Coarse adjustment is achieved by varying the setting of a Potentiometer mounted inside the automatic voltage regulator which is fitted to the alternator terminal box.
- Gross adjustment to completely change the voltage setting of the alternator is achieved by reconnecting the alternator windings at the alternator terminal box. Details of these connections can be found in the Alternator Manual.

WARNING:

! Do not close the circuit breaker during the phase rotation check if load cables have already been connected.

12. While the generator set is producing voltage, check the phase rotation of the set by connecting a phase rotation meter to the terminals on the generator side of the circuit breaker. This check should be carried out by a qualified technician.

13. Shutdown: To shutdown the generator set press the Emergency Stop Pushbutton or turn the Control Switch to “STOP”.
14. To check any remote start facilities ensure the Emergency Stop Pushbutton and any remote Stop Pushbuttons are released and turn the Control Switch to “AUTO”.

Apply the remote start signal and the engine should automatically go through its startup sequence as previously described. Remove the remote start signal and the engine should stop.

Note:
- On 4001 and 4001E Series Control System a Run On Timer will allow the set to run for a short duration to cool prior to stopping automatically.

To shutdown the generator set remove the remote start signal, press the Emergency Stop Pushbutton or turn the Control Switch to “STOP”.

WARNING:
- Always switch off the circuit breaker, shut down the generator set and disconnect the battery negative (-) lead prior to connection or disconnection of the load cables.

15. The load cables can now be connected to the generator set in preparation for normal operation.

5.4 Normal Manual Startup/Shutdown - Autostart Panel (2001, 4001 or 4001E Series)

The following procedure should be used for subsequent manual starts on a generator set equipped with a 2001, 4001 or 4001E Series Autostart Control System:

Note:
- The generator set may be stopped at any time by pushing the Emergency Stop Pushbutton or turning the Control Switch to “STOP”.

Pressing the Emergency Stop Pushbutton also illuminates the “OVERSPEED” fault lamp even though an overspeed has not occurred. Prior to restarting the set, the Emergency Stop Pushbutton must be released by turning it clockwise. The fault lamp must also be reset by turning the Control Switch to “STOP”.

1. Complete Pre-Start checks as per Section 5.2.

Note:
- The engine will not start if any fault indicators are illuminated. Reset the control system by turning the Control Switch to “STOP”. Ensure the faults have been corrected prior to attempting to start the generator set.

2. Manual Start: Ensure the Emergency Stop Pushbutton and any remote Stop Pushbuttons are released. Turn the Control Switch to “RUN”.

The engine will automatically crank up to 3 times or until the engine fires. If the engine does not fire, the control system locks-out on “FAIL TO START” and illuminates a fault lamp on the control panel. If this happens refer to the trouble shooting guide in Section 9 or the Engine Manual to determine the cause of failure to start.

WARNING:
- Unburned fuel gases can build-up in the exhaust system after multiple failed attempts. Unscrew the plugs on the exhaust outlet elbows or stub pipes and allow the unburned fuel to dissipate. Once all signs of unburned fuel have disappeared and any other problems causing the failure to start have been rectified, replace the plugs and repeat the cranking procedure.

WHEN ENGINE HAS STARTED

3. Check for any abnormal noise or vibration.

4. Check for fluid leakage or leaks in the exhaust system.

5. Check the control panel for indications of abnormal operation, particularly abnormally high temperature or abnormally low oil pressure. The oil pressure should be in the normal range within about 10 seconds of starting.

6. Switch the Alternator Output Circuit Breaker to “ON” (handle up).

Note:
- Load can now be applied to the generator set. However the maximum step load that can be accepted in any one step is dependent on the operating temperature of the set. With the generator cold (not more than 20°C (68°F)) the maximum step load acceptance is approximately 50% of rated output. However with the set at normal operating temperature (approximately 80°C (176°F)) the maximum step load can be 70-100% of the rated power depending on the generator set model. Typically generator sets up to 100 kVA can accept a 100% load.

7. Shutdown: To shut the generator set down, turn off the load by switching the Alternator Output Circuit Breaker to “OFF” (handle down). Allow the generator set to run without load for a few minutes to cool. Then turn the Control Switch to “STOP”. The generator set will shutdown.

In case of an emergency where immediate shutdown is necessary, the Emergency Stop Pushbutton should be pushed immediately without disconnecting the load.

5.5 Automatic Startup/Shutdown - Autostart Panel (2001, 4001 or 4001E Series)

The following procedure should be used for preparing a generator set equipped with a 2001, 4001 or 4001E Series Autostart Control System to be started from a remote location.

Note:
- The generator set may be stopped at any time by pushing the Emergency Stop Pushbutton or turning the Control Switch to “STOP”.

Pressing the Emergency Stop Pushbutton also illuminates the “OVERSPEED” fault lamp even though an overspeed has not occurred. Prior to restarting the set, the Emergency Stop Pushbutton must be released by turning it clockwise. The fault lamp must also be reset by turning the Control Switch to “STOP”.

1. Complete Pre-Start checks as per Section 5.2.

Note:
- The engine will not be able to start if any fault indicators are illuminated. Reset the control system by turning the Control Switch to “STOP”. Ensure the faults have been corrected prior to attempting to start the generator set.

2. Automatic Start: Ensure the Emergency Stop Pushbutton and any remote Stop Pushbuttons are released. Turn the Control Switch to “AUTO”.

3. Switch the Alternator Output Circuit Breaker to “ON” (handle up).

The generator set is now ready to automatically start when it receives a remote start signal. When the start signal is removed it will automatically stop.

Note:
- On 4001 and 4001E Series Control Systems a Run On Timer will allow the set to run for a short duration to cool prior to stopping automatically.

6. GENERATOR SET MAINTENANCE
6. General
A good maintenance program is the key to long generator set life. Maintenance and service should only be carried out by qualified technicians. Records of this work should be kept to aid in developing an efficient maintenance program.

In general, the generator set should be kept clean. Do not permit liquids such as oil film to accumulate on any internal or external surfaces or on, under or around any acoustic material, if fitted. Wipe down surfaces using an aqueous industrial cleaner. Do not use flammable solvents for cleaning purposes.

Any acoustic material with a protective covering that has been torn or punctured should be replaced immediately to prevent accumulation of liquids or oil film within the material.

6.2 Preventative Maintenance
Depending on the application of the generator set, requirement for preventative maintenance will vary. The preventative maintenance requirements associated with the engine are detailed in the Engine Manual which should be reviewed in conjunction with this section. Maintenance intervals for the engine may be more frequent than those shown in this section.

6.2.1 Daily or at Each Startup: (For standby sets that have not been run.) Perform an operational check on the generator set by starting and running the set for only 5 minutes.

6.2.2 Every Two Weeks: (For standby sets that have not been run.) Perform an operational check on the generator set by starting and running the set for 5 minutes.

6.2.3 Every Month: (For standby sets that have not been run on load.) Perform an operational and load check on the generator set by starting and running the set on at least 50% load for 1 to 2 hours.

6.2.4 Every Six Months or 250 Hours: Repeat the daily procedures plus the following:
1. Check all control system safety devices by electrically simulating faults.
2. Clean all battery cap vents.
3. Tighten all exhaust connections.
4. Tighten all electrical connections.
5. Check all gas connections around the engine with a suitable gas detector meter or other approved means.
7. Start the engine and observe the instrument panel to ensure that all gauges and meters are operating properly.
8. If a spark arrestor has been fitted, this should be removed and thoroughly cleaned to remove any carbon build-up.

6.2.5 Alternator Preventative Maintenance: There is no routine maintenance required on the alternator, however periodic inspection of the alternator winding condition and periodic cleaning is recommended. See Section 8.2, Alternator Maintenance, and the Alternator Manual.

6.2.6 Engine Preventative Maintenance: See the Engine Manual provided with this manual for information on regular maintenance required to keep the engine operating efficiently.

6.3 Removal of Engine and/or Alternator
The following procedures should be used for removal of the engine and/or alternator.

1. Isolate and disconnect electrical power supply to auxiliary equipment such as a water heater.
2. Isolate the battery charger supply. Disconnect the battery (negative lead first) and remove if necessary.
3. If the generator set is equipped with an enclosure, remove the fixing bolts on each side, disconnect the exhaust system and then remove the enclosure.
4. Isolate and disconnect the control panel and remove together with stand from the generator set, ensuring that all cables have been adequately identified to facilitate reconnection.
5. Isolate and disconnect the gas supply system. This should only be carried out by qualified personnel and in compliance with all relevant codes and regulations.
6. If the engine and alternator are both to be removed, they may be lifted out as one unit using the lifting eyes provided on both the engine and alternator. First the bolts holding the engine/alternator to the baseframe have to be removed.

6.3.1 Engine Removal Only:
1. If only the engine is to be removed, the wiring loom should first be removed from the engine.
2. If the alternator is fitted with only one set of feet then the front end of the alternator will have to be firmly supported before removing the engine.
3. Remove the bolts holding the engine to the base. It may also be advantageous to loosen the alternator mounting bolts.
4. Remove the alternator fan guards.
5. Support the rotor assembly using a sling or wooden supports taking care not to damage the fan.
6. Remove the bolts between the flexible coupling and the engine flywheel.
7. Support the rear of the engine using an overhead crane or similar device.
8. Remove the coupling housing bolts.
9. The engine is now moved forward until it is clear of the alternator and may be lifted away from the base.

6.3.2 Alternator Removal Only:
1. If the alternator only is to be removed, the rear of the engine must be firmly supported.
2. Remove the wiring loom.
3. Remove the bolts holding the alternator to the baseframe. Loosen the engine bolts as well.
4. Remove the alternator fan covers and support the rotor and the front of the alternator. Ensure that the rotor is positioned with a pole at the bottom center line. This is to avoid any damage to the bearing or exciter by limiting the rotor movement to that of the air gap.
5. Uncouple the alternator from the engine as per Section 6.3.1.
6. Support the alternator using a sling or similar device and slide the complete alternator back on the base before lifting.

7. ENGINE DESCRIPTION AND MAINTENANCE

7.1 Engine Description
7.1.1 General: The engine that powers the generator set is an industrial gas engine that has been selected for its reliability and efficiency in operation. The engine is a 4 stroke spark ignition type with all the accessories necessary to provide a reliable power supply. Full details of the engine and associated equipment is provided in the Engine Manual. This section gives
a brief discussion of the major systems and how they are integrated into the generator set.

If regular preventative maintenance is performed as per the Engine Manual, the gas engine will continue to provide reliable power for many years.

7.1.2 Cooling System: The engine cooling system is comprised of a radiator, high capacity pusher fan, a mechanically driven water pump and a thermostat. The fan is a pusher type that pushes the air through the radiator. This system provides for cooling of the surface heat of the engine and alternator, and internal cooling of the engine by the water circulating in the radiator. The alternator also has an integral fan that circulates cool air inside the housing. The thermostat maintains coolant temperature at a level for efficient operation of the engine.

It is important to pay careful attention to air flow around the generator set to ensure proper cooling. Following the installation instructions in Section 4.7 should ensure satisfactory performance.

7.1.3 Engine Governing: The engine governor is either a mechanical or electronic device designed to maintain a constant engine speed in relation to load requirements. The engine speed is directly related to the frequency of the alternator output, so any variation in engine speed will effect the frequency of the power output.

The governor senses engine speed and controls the fuel rate. As load increases on the alternator the governor will increase fuel flow to the engine. As load is reduced the governor reduces fuel flow.

7.1.4 Fuel System: On most generator sets, the engine fuel system is connected directly to the gas supply system.

7.1.5 Exhaust System: Exhaust systems are provided to reduce the noise level of the engine and to direct the exhaust gases to where they will not be a hazard.

On smaller sets the exhaust silencer and piping may be mounted directly on the engine. On larger engines the exhaust system is supplied loose for installation on site.

7.1.6 Air Flap Valve: An air flap valve, if fitted, prevents overspeeds due to ingestion of gas or fumes by cutting off the air supply. Functional testing of these combustion air intake valves should not be performed on engines on load. A functional test should only be carried out when the engine is not running. If it is necessary to demonstrate air valves closing when the engine is running this should be done at no load. The engine should absolutely not be restarted immediately afterwards.

WARNING: The closing of the air flap valve while the engine is running can cause oil carry over into the exhaust system which is highly volatile. The engine should be left for a period of time to allow these gases to dissipate.

7.1.7 Starting Aids: Ethyl Ether starting aids are not recommended. They will reduce the efficient working life of the engine.

7.2 Engine Maintenance

The Engine Manual supplied with this manual contains detailed information on maintaining the engine. It also includes a comprehensive Trouble Shooting guide for engine faults.

7.3 Radiator Maintenance

7.3.1 General Notes: Corrosion in the radiator can be a prime cause of failure. This is prompted by air in the water. Always ensure pipe connections are free of leaks and bleed air from top of the radiator regularly to keep the system “air free”. Radiators should not be left standing in a partially filled condition. Radiators left partly filled with water will suffer much more rapidly from the effects of corrosion. For an inoperative generator set, either drain the radiator completely or ensure that it is maintained full. Wherever possible, radiators should be filled with distilled or naturally soft water, dosed with suitable corrosion inhibitors.

WARNING: Radiator coolant is normally very hot and under pressure. Do not work on the radiator or disconnect pipework until it has cooled. Do not work on the radiator or remove any guarding while the fan is in motion.

7.3.2 External Cleaning: In dusty or dirty conditions the radiator fins can become blocked with loose debris, insects, etc. and this fouling will have an effect on the performance of the radiator.

For regular removal of light deposits use a low pressure steam jet. More difficult deposits may need a detergent with a low pressure hot water hose. Spray steam jet or water from the front of the radiator towards the fan. Spraying in the opposite direction will force debris further into the core. Covering the engine/alternator during this process will keep them clean.

Stubborn deposits, which cannot be removed by the above methods may require removal of the radiator and immersion in a heated alkali degreasing solution for about 20 minutes and then washing off with a hot water hose.

7.3.3 Internal Cleaning: If, due to leaky joints for instance, indiscriminate topping-up with hard water has been carried out for some time, or if the generator set has been run without inhibitors the system may become fouled by scale.

To descale the radiator, use the following procedure:

1. Drain the water system and disconnect and blank off the pipe connections to the engine.
2. Prepare a 4% solution of inhibited acid solvent and fresh water. Add the acid to the water, never vice versa.
3. Allow several minutes for mixing, then heat the solution to 49°C (120°F) maximum.
4. Run the solution slowly into the radiator via the filler cap or a branch in the manifold. Effervescence will occur. When it ceases, fill the radiator completely with the heated solvent.
5. Allow to stand for several minutes; then drain the solvent back into the original container through the bottom manifold or drain plug.
6. Examine the interior of the headers. If scale remains repeat the process outlined above with the solvent strength increased to 8%.
7. After descaling the acid solution has to be neutralized as follows:-

Fill the mixing container with fresh water, heat to boiling point then add common washing soda crystals at the following strength: 0.5 kg of soda to 20 liters water (1 lb. soda to 4 gallons water). Fill the radiator with this solution, then drain it back into the container.
8. Flush the radiator in this manner several times, finally leaving the radiator full for at least an hour. Drain until empty and wash out the radiator with hot fresh water.
9. Before putting the radiator into service again, fill with water and apply a test pressure equal to twice that of the working pressure. Examine carefully for any leaks which may have been revealed by descaling.
10. Prior to recommissioning, the coolant must be dosed with any necessary corrosion inhibitors and/or the correct proportion of antifreeze.
8. ALTERNATOR DESCRIPTION AND MAINTENANCE

8.1 Alternator Description

8.1.1 General: The alternator fitted on the generator set is of the brushless self-excitation type which eliminates the maintenance associated with slip rings and brushes. The control system consists of an automatic voltage regulator, protective circuits and the necessary instruments to allow monitoring of the output of the generator set.

8.1.2 Construction/Major Components: The alternator unit is completely self-contained and is designed and constructed to provide trouble free operation, ease of maintenance and long service life.

The stator core is produced from insulated low loss electrical grade sheet steel laminations. These are built and welded under a fixed pressure to give an extremely rigid core to withstand vibrations and load impulses. The complete wound stator is, after impregnation, pressed into the frame and pinned into position.

A high grade precision machined shaft carries the rotor assembly which comprises the alternator rotating field systems, the exciter rotator/rotating diode system and the cooling fan. The rotor is mechanically wedged and supported on the winding end to allow an overspeed of up to 2250 RPM (4 pole) and 4500 RPM (2 pole). The complete rotor assembly is dynamically balanced to ensure vibration-free running.

At the drive end of the rotor assembly a cast-aluminum centrifugal fan draws cooling air through screened/louvered covers at the non drive end and discharges it through similar side mounted covers at the drive end.

8.1.3 Alternator Method of Operation: The electrical power produced by the generator set is derived from a closed loop system consisting principally of the exciter rotor, the main revolving field and the automatic voltage regulator (See Figure 8.1).

The process begins when the engine starts to rotate the internal components of the alternator. The residual magnetism in the main rotor (item 1) produces a small alternating voltage (AC) in the main stator (item 2). The automatic voltage regulator (item 3) rectifies this voltage (converts it to DC) and applies it to the exciter stator (item 4).

This DC current to the exciter stator creates a magnetic field which, in turn, induces an AC voltage in the exciter rotor (item 5). This AC voltage is converted back to DC by the rotating diodes (item 6).

When this DC voltage appears at the main rotor, a stronger magnetic field than the original residual field is created which induces a higher voltage in the main stator.

This higher voltage circulates through the system inducing an even higher DC voltage back at the main rotor. This cycle continues to build up the voltage until it approaches the proper output level of the generator set. At this point the automatic voltage regulator begins to limit the voltage being passed to the exciter stator which, in turn, limits the overall power output (item 7) of the alternator.

This build-up process takes place in less than one second.

8.1.4 Automatic Voltage Regulator: The Automatic Voltage Regulator (AVR) maintains a no load to full load steady state voltage to tight tolerances. The AVR has a volts/hertz characteristic which proportionally reduces the regulated voltage at reduced speeds. This feature aids the engine during sudden large additions of load.

8.2 Alternator Maintenance

Although maintenance is rarely required, periodic inspection and cleaning is recommended.

Perform a winding insulation test according to procedures provided in the Alternator Manual before the initial start, after generator set storage, and every 3 to 6 months depending on humidity levels (more often in higher humidity). In high humidity areas, installing space heaters to operate when the generator set is not running will help keep the windings dry.

The alternator air filters, if fitted, should be inspected regularly depending on site conditions. If cleaning is necessary, remove the filter elements from the filter frames. Immerse or flush the element with a suitable detergent agent until the element is clean. Dry the elements thoroughly before refitting.

Additionally the alternator unit should be cleaned on a regular basis. The frequency of such cleanings depends on the environmental conditions of the operating site. The following procedure should be followed when cleaning is necessary: Disconnect all power. Wipe dust, dirt, oil, water and any other liquids from the external surfaces of the alternator unit and from the ventilation screens. These materials can work their way into the windings and may cause overheating or insulation breakdown. Dust and dirt is best removed using a vacuum cleaner. Do not use compressed air, steam or high pressure water!

The separate Alternator Manual provided with this manual contains more detailed information on alternator maintenance. It also includes a trouble shooting guide for alternator faults.

![Figure 8.1: Block Diagram of Alternator Operation](image)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Rotor</td>
<td>5</td>
<td>Exciter Rotor</td>
</tr>
<tr>
<td>2</td>
<td>Main Stator</td>
<td>6</td>
<td>Rotating Diodes</td>
</tr>
<tr>
<td>3</td>
<td>Automatic Voltage Regulator</td>
<td>7</td>
<td>Power Output</td>
</tr>
<tr>
<td>4</td>
<td>Exciter Stator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. CONTROL SYSTEM DESCRIPTION AND TROUBLE SHOOTING

9.1 Control System Description and Identification

9.1.1 Description: An advanced electronic control system has been designed and installed to control and monitor the generator set. Depending on the requirements of the set, one of several different standard control systems may be fitted. These include the 2001 Series Autostart System, 4001 Series Deluxe Autostart System and the 4001E Series Enhanced Deluxe Autostart System. Other more specialized systems may be installed for specific installations in which case separate documentation is provided.

These control systems consist of three major components working together - a control panel, an engine interface module (EIM), and an alternator output circuit breaker.

The control panel provides a means of starting and stopping the generator set, monitoring its operation and output, and automatically shutting down the set in the event of a critical condition arising such as low oil pressure or high engine coolant temperature. A 2001, 4001 or 4001E Series Panel is installed as appropriate for the requirements of the generator set installation.

The Engine Interface Module is a sealed, engine mounted module that provides switching relays for the Starter Motor Solenoid and Fuel Solenoid. Each of these circuits is protected with individual fuses mounted in the module. Individual LED’s illuminate when each circuit is energized. The Engine Interface Module is available in three models depending on the type of control panel being used - the 12 volt EIM SR, the 12 volt EIM Plus and the 24 volt EIM Plus. The table below indicates which EIM module is used on which generator sets:

<table>
<thead>
<tr>
<th>Panel Fitted</th>
<th>Generator Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Sets up to 150kVA (12 volt systems)</td>
</tr>
<tr>
<td>4001</td>
<td>Sets above 150kVA (24 volt systems)</td>
</tr>
<tr>
<td>4001E</td>
<td>12 Volt EIM Plus</td>
</tr>
<tr>
<td></td>
<td>24 Volt EIM Plus</td>
</tr>
</tbody>
</table>

The power output circuit breaker serves to protect the alternator by automatically disconnecting the load in the event of overload or short circuit. It also provides a means of switching the generator set output.

9.1.2 Identification: Figure 9.1 shows each of the control panels to aid in identifying the system fitted on the generator set. The 2001 Series Panel has a Control Switch, located below 5 fault lamps. The 4001 Series Panel is similar to the 2001 except the Control Switch is located below the gauges and there are 7 fault lamps. The 4001E Series Panel also has the Control Switch located below the gauges but has up to 16 fault lamps.

9.1.3 Panel Equipment: Before starting or running the generator set, the operator should become fully acquainted with the instruments and controls. The instruments should be observed from time to time while the generator set is running so that any abnormal readings can be detected before problems arise.

Figure 9.1 shows typical diagrams of each of the control panels. Addition of optional equipment will add items to the panel so the panel fitted on the generator set may be slightly different from the typical ones shown. The following descriptions explain the function of each item on the panels:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AC VOLTMETER</td>
<td>A voltmeter that indicates the AC voltage generated at the alternator output terminals. The reading indicated on the voltmeter will vary depending on the connections made inside the alternator terminal box, the setting of the voltage regulator and the position of the voltmeter selector switch (item 2). It should not, however, vary while the set is operating. In the event of alternator excitation failing, the output voltage will fall to approximately 20 to 40 volts. If the meter gives no reading while the generator set is running, ensure that the AC voltmeter selector switch is not in the OFF position.</td>
</tr>
<tr>
<td>2. AC VOLTMETER SELECTOR SWITCH</td>
<td>A selector switch allowing the operator to select voltage reading between phases or between a phase and neutral. The OFF position allows the voltmeter “zero” position to be checked while the generator set is running.</td>
</tr>
<tr>
<td>3. AC AMMETER</td>
<td>An ammeter that indicates the AC electrical current being delivered which is dependent on the connected load. A separate reading from each of the phases is possible using the ammeter selection switch (item 4). If the meter gives no reading while the generator set is running, ensure that the AC ammeter selector switch is not in the OFF position.</td>
</tr>
<tr>
<td>4. AC AMMETER SELECTOR SWITCH</td>
<td>A selector switch allowing the operator to select a current reading from each of the phases. The OFF position allows the ammeter “zero” position to be checked while the generator set is running.</td>
</tr>
<tr>
<td>5. FREQUENCY METER</td>
<td>A meter that indicates the output frequency of the generator set. The engine maintains a relatively constant speed under governor control so as to provide the proper operating frequency of 50 Hz or 60 Hz when the generator set is operating at full rated load. At partial load the frequency will be slightly higher than normal, depending on the droop of the governor. In practice, no load frequencies of approximately 52 and 62 Hz for 50 Hz and 60 Hz respectively, are considered normal. The frequencies will fall, as the set is loaded, to 50 Hz and 60 Hz at full load.</td>
</tr>
<tr>
<td>6. HOURS RUN METER</td>
<td>A meter that indicates the total number of hours of generator set operation to aid in maintenance.</td>
</tr>
<tr>
<td>7. ENGINE WATER TEMPERATURE GAUGE</td>
<td>A temperature gauge connected to a sensor in the engine to monitor engine coolant temperature. The normal operating temperature should be approximately 85°C (185°F).</td>
</tr>
<tr>
<td>8. DC BATTERY VOLTMETER</td>
<td>A voltmeter that indicates the state of charge of the battery. When the engine is at standstill the normal battery voltage will be 12 to 14 volts on a 12 volt system and 24 to 28 volts on a 24 volt system. During starting, the needle will drop to about 70% of normal and oscillate as the engine cranks. Once the engine has started, the needle should return to its normal value. If the battery charging alternator is charging correctly, the voltage reading will always be higher with the generator set running than when it is stopped.</td>
</tr>
<tr>
<td>9. ENGINE OIL PRESSURE GAUGE</td>
<td>A gauge to monitor engine coolant temperature. The normal temperature should be approximately 85°C (185°F).</td>
</tr>
<tr>
<td>10. FAULT INDICATOR LAMPS</td>
<td>Fault lamps that illuminate to indicate that the protective circuitry has sensed the indicated condition. The lamp should be red on conditions for which the system will initiate a shutdown of the set. For alarms, the lamp can be red or amber.</td>
</tr>
</tbody>
</table>
Figure 9.1 Design of Typical Control Panels
9.2 Functional Description 2001, 4001 and 4001E Series

The engine does not start after a preset duration (CYTON) then a system will engage the auxiliary start solenoid (ASS) to crank the engine. If the engine fails to fire after 3 start attempts then the “FAIL TO START” fault lamp will illuminate. The number of starts is dependent on the setting of CYTON, CYTOFF and the Duration Timer DT.

As soon as the generator starts, the power supply to the auxiliary circuits is connected via contactor HC, whenever the generator stops contactor HC re-energizes and reconnects the supply to the auxiliaries. This will keep the low oil pressure of a starting engine from causing the protection circuits to initiate a shutdown.

Note:

- As soon as the generator starts, the power supply to the engine auxiliaries is disconnected via contactor HC, when it is fitted. Whenever the generator stops contactor HC re-energizes and reconnects the supply to the auxiliaries.

The beginning of the start sequence initiates the Fault Protection Timer (FPT) relay. Until the FPT times out (factory set at 15 seconds) the low oil pressure and high engine coolant temperature protective circuits are inhibited. This may allow a cool down period at low power prior to shutdown.

9.2.1 Function (2001, 4001 and 4001E Series): Section 5 of this manual provides detailed guidance and checklists for the operation of the generator set. This section provides a more detailed description of the functions of the control system during operation.

When the Control Switch is turned to "RUN" or a remote start signal is received with the Control Switch in the "AUTO" position, the control system will initiate its automatic start sequence. The fuel control solenoid is turned on to allow gas to flow to the engine. The starter motor is then energized via the auxiliary start solenoid (ASS) to crank the engine. If the engine does not start after a preset duration (CYTON) then a delay of a preset duration (CYTOFF) will elapse before cranking again.

If the engine fails to fire after 3 start attempts then the “FAIL TO START” fault lamp will illuminate. The number of starts is dependent on the setting of CYTON, CYTOFF and the Duration Timer DT. With CYTON and CYTOFF set at 5 seconds and DT set at 27.5 seconds, this gives 3 crank attempts before FAIL TO START. 5 seconds on, 5 seconds off, 5 seconds on, 5 seconds off, “FAIL TO START”. Refer to the trouble shooting guide or Engine Manual to determine the cause of failure to start.

Start will be inhibited until the protection circuits of the control system are reset by turning the Control Switch to “STOP”. All time periods are approximate.

When the engine fires and is above cranking speed the starter motor is automatically disengaged. This condition is detected from the W/L terminal of the engine driven battery charging alternator. In addition, when the generator is providing voltage a back up signal is sent to cancel the start sequence. The voltage of the alternator is detected via relay AR.

Note:

- As soon as the generator starts, the power supply to the engine auxiliaries is disconnected via contactor HC, when it is fitted. Whenever the generator stops contactor HC re-energizes and reconnects the supply to the auxiliaries. This makes it appropriate for standby generator systems.

The 2001, 4001 and 4001E Series Control Systems provide automatic starting and stopping of the generator set from a remote signal as well as manual starting and stopping.

These control systems are of the relay timer type based on a double sided Printed Circuit Board (P.C.B.). The P.C.B. is off board fuse protected and controls the starting, stopping and fault protection of the engine. Figures 9.2, 9.3 and 9.4 show the layout of the 2001 Series P.C.B., the 4001 Series P.C.B. and the 4001E Series Expansion P.C.B. respectively.

Since these control systems are designed for automatic starting, they are fitted with connections for remote control. Included are terminals for Remote Emergency Stop and an interface to an Intelligent Load Transfer Panel. Additionally, the 4001 and 4001E Series Control Systems are fitted with an interface to Remote Annunciators which are described in Section 9.4.8.

9.2.2 Protective Circuits (2001, 4001 and 4001E Series): Engine coolant temperature is monitored by the high temperature switch located on the engine. This is normally an open switch designed to close at 105°C (220°F). On closing, a relay energizes and self latches, which illuminates the “HIGH ENGINE TEMPERATURE” fault lamp. It also breaks the circuit energizing the control relay (CR). This closes the fuel solenoid valve, shutting down the engine. The fault lamp will remain illuminated and the engine locked out until the fault has been acknowledged and reset by turning the Control Switch to “STOP”. On some larger models a low coolant level sensor will also cause the generator set to shut down and will also illuminate the “HIGH ENGINE TEMPERATURE” fault lamp.

WARNING:

- If at any time the generator set stops because of a fault, the fault should be rectified before trying to restart the generator.

These protective circuits will prevent start of the generator set until they are reset. Turning the Control Switch to “STOP” resets the system.

Manually the generator set can be stopped at any time by pressing the Emergency Stop Pushbutton or by turning the Control Switch to “STOP”. The set will also automatically shutdown when the remote start signal is removed. On 4001 and 4001E Control System the Run On Timer (ROT) will allow a cool down period at low power prior to shutdown.
TEMPERATURE” fault lamp even though the temperature may be in the normal range.

Engine lubricating oil pressure is also monitored to check for an excessively low pressure condition. This is monitored by an engine mounted, normally closed, switch that opens under normal running conditions. Should the oil pressure fall to or below about 22 p.s.i. (1.6 bar) the switch will close. This in turn energizes a relay which self latches, and illuminates the “LOW OIL PRESSURE” fault lamp. Again the relay CR is de-energized which causes the fuel solenoid valve to close and the engine to shutdown. Reset is effected by turning the Control Switch to “STOP”.

The Low Battery Voltage alarm which is fitted as standard on the 4001 and 4001E Series Control Systems detects the battery voltage and compares it to an adjustable reference (LBV) which is factory set at 10.75 volts for 12 volt systems and 22.75 volts for 24 volt systems. This alarm has a built in time delay to prevent spurious tripping such as when the engine is cranking.

Four additional Alarm circuits are provided on the 4001E Series Control System. The Approaching Low Oil Pressure and Approaching High Engine Temperature alarms work off the sensors fitted for the gauges. The temperature alarm is factory set to go off at 90°C ± 1°C. The Not in Auto Mode Alarm senses the position of the Control Switch. The Battery Charger Failure Alarm detects low voltage from the charger. This level (BCV) is factory set at 11.75 volts for 12 volt systems and 22.25 volts for 24 volt systems. This alarm can be operated in one of 3 modes depending on the position of Link 6 on the 4001E Expansion P.C.B. (see diagrams below):

Mode 1: Link in Position 1

- 1
- 2
- 3

For generator sets with trickle charger and engine driven charging alternators. In this position the charger failure circuit only monitors when the engine is not running.

Mode 2: Link in Position 2

- 1
- 2
- 3

For generator sets fitted with AC powered chargers only (no engine driven charging alternator.)

Mode 3 Link in Position 3

- 1
- 2
- 3

For generator sets with no battery charger fitted. In this position the charger failure circuit is disabled.

The 2001 Series Control System has one additional channel beyond the standard that can be either a Shutdown circuit or an Alarm circuit depending on how it is programmed at the factory.

The 4001 Series Control System has one additional Shutdown circuit and one additional Alarm circuit beyond the standard. The use of these circuits is programmed at the factory.

The 4001E Series Control System has two additional Shutdown circuits, one additional Alarm circuit and four additional circuits that can be either Shutdown or Alarm circuit. Each of these is programmed at the factory.

The additional possible Shutdown circuits (not all available on all sets) include shutdown on:
- High Lube Oil Temperature
- Low Coolant Level
- Low Gas Pressure
- Underspeed
- Overvoltage
- Undervoltage
- Earth Fault
- Earth Leakage
- Combined Over/Under Voltage

The additional possible Alarm circuits (not all available on all sets) include alarms for:
- Low Gas Pressure
- Low Coolant Temperature

For the 2001 Series Control System, the Fault Indicating Lamps are grouped on the control panel as follows:-
- L1 Fail To Start Shutdown
- L2 High Engine Temperature Shutdown
- L3 Low Oil Pressure Shutdown
- L4 Overspeed Shutdown
- L5 Additional Shutdown or Alarm (programmed at factory)

For the 4001 Series Control System, the Fault Indicating Lamps are grouped on the control panel as follows:-
- L1 Fail To Start Shutdown
- L2 High Engine Temperature Shutdown
- L3 Low Oil Pressure Shutdown
- L4 Overspeed Shutdown
- L5 Additional Shutdown
- L6 Low Battery Alarm
- L7 Additional Alarm

For the 4001E Series Control Systems nine additional Fault Indicating Lamps are included on the separate 4001E expansion P.C.B. which are grouped on the control panel as follows:-
- L8 Not In Auto Alarm
- L9 Approaching High Engine Temperature Alarm
- L10 Approaching Low Oil Pressure Alarm
- L11 Battery Charger Failure Alarm
- L12 Programmable Channel 1
- L13 Programmable Channel 2
- L14 Programmable Channel 3
- L15 Programmable Channel 4
- L16 Additional Shutdown

Indicators L12-L14 are programmed for shutdown or alarm functions using the Dil switches on the P.C.B.

The Dil switches are assigned as follows:
- Fault Channel
- Dil Switch
- L12 SW1
- L13 SW2
- L14 SW3
- L15 SW4

The setting of these programmable Fault Indicator Lamps can be checked on the P.C.B. With both poles in “SD” position, the fault channel is configured as a shutdown. With both poles in “ALM” position, the fault channel is configured as an alarm.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FPT: Fault Protection Timer Adjust</td>
<td>3.</td>
<td>CYTON: Crank On Period</td>
</tr>
<tr>
<td></td>
<td>Range: 1-70 seconds</td>
<td></td>
<td>Range: 0.25-20 seconds</td>
</tr>
<tr>
<td></td>
<td>Set: 15 ± 1 second</td>
<td></td>
<td>Set: 5 ± 1 second</td>
</tr>
<tr>
<td>2.</td>
<td>DT: Duration Timer (sets duration of cranking</td>
<td>4.</td>
<td>CYTOFF: Crank Off Period</td>
</tr>
<tr>
<td></td>
<td>sequence)</td>
<td></td>
<td>Range: 0.25-20 seconds</td>
</tr>
<tr>
<td></td>
<td>Set: 27.5 ± 2.5 seconds</td>
<td></td>
<td>Set: 5 ± 1 second</td>
</tr>
<tr>
<td></td>
<td>Range: 0.25-20 seconds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9.2: Layout of the 2001 Series P.C.B.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1. | CYTON: Crank On Period
 Range: 1-20 seconds
 Set: 5 ± 1 second | 4. | DT: Duration Timer (sets duration of cranking sequence)
 Range: 1-65 seconds
 Set: 27.5 ± 2.5 seconds |
| 2. | CYTOFF: Crank Off Period
 Range: 1-20 seconds
 Set: 5 ± 1 second | 5. | LINK 1: Remove for 4001E system
 where expansion board is used |
| 3. | ROT: Run On Timer (sets cool down period)
 Set: 240 ± 15 seconds
 Range: 1-70 seconds
 Range: 3-330 seconds |
| 7. | LBV: Low Battery Voltage Monitor Adjust
 Set: 10.75 volts for 12 volt systems
 22.75 volts for 24 volt systems | 7. | LBV: Low Battery Voltage Monitor Adjust
 Set: 10.75 volts for 12 volt systems
 22.75 volts for 24 volt systems |

Figure 9.3: Layout of the 4001 Series P.C.B.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1. | TEMP: Approaching High Engine Temperature Set Point 7.
| | Set: 90°C ± 1°C |
| 2. | SW1: Shutdown/Alarm Selector for Fault L12 |
| 3. | SW2: Shutdown/Alarm Selector for Fault L13 |
| 4. | SW3: Shutdown/Alarm Selector for Fault L14 |
| 5. | SW4: Shutdown/Alarm Selector for Fault L15 |
| 6. | BCT: Battery Charger Timer Set
| | Range: 3-330 seconds
| | Set: 180 ± 15 seconds |
| 7. | IDLT: Input Delay Timer Set
| | Range: 0.25-30 seconds
| | Set: 1 ± 0.5 seconds |
| 8. | BCV: Battery Charger Failure Detection Set Point
| | Set: 11.75 volts for 12 volt systems
| | 22.25 volts for 24 volt systems |
| 9. | LINK 6: Battery Charger Failure Operating Mode |

Figure 9.4: Layout of the 4001E Series Expansion P.C.B.
9.3 Control System Options and Upgrades

A large variety of options may be fitted to customize the control system to a specific installation. The following sections cover the use and operation of some of these options.

9.3.1 Battery Trickle Chargers: These chargers are designed to ensure that the starter batteries maintain their charge even if the generator set is not operated for long periods.

The chargers are generally available with a 5 Amp nominal rating and are usually mounted within the control panel. A 10 Amp nominal rating battery charger may be fitted in some circumstances but would be located in a separate box placed adjacent to the control panel. These chargers require a continuous electrical power supply of either 220/240 volts AC or 120 volts AC depending on the charger.

Control switches for the chargers are not normally fitted to prevent inadvertent switching off of the charger. The control system will automatically disconnect the charger on startup of the generator set. While the engine is running the batteries are charged by the engine driven battery charging alternator.

As additional options, an “ON”/“OFF” switch and a battery charger boost control may be fitted. The boost control overrides the automatic control mechanism of the charger that would normally reduce charging level as the battery becomes charged. This can allow faster charging of the battery, however care must be taken to only use the boost control for a short time to avoid overcharging the battery and/or boiling the battery dry.

As an option, a battery charger ammeter may be fitted to the control panel in order for the operator to monitor the functioning of the battery charger.

9.3.2 Heaters: In addition to conventional space heaters that are useful in keeping the generator set warm and dry in cold or humid environments, five types of heater may be fitted on the generator set.

Immersion type heaters (engine heaters) may be fitted in the engine coolant system to ensure that the engine is easy to start and able to take load more quickly. These heaters are provided with an integral non-adjustable thermostat set at approximately 40°C (104°F). The power rating of the heaters (in kW) varies depending on the size of the set. Generally single 1 kW heaters are fitted to sets below 400 kVA. On larger machines two 1 kW or 1.5 kW heaters are fitted.

Alternator anti-condensation heaters (alternator heaters) may be fitted to the alternator stator winding to keep them dry in humid conditions. These are in the form of a small heating element and operate at a relatively low temperature so they do not require a thermostat.

Panel anti-condensation heaters (panel heaters) may be fitted in the control panel to keep moisture levels down.

Engine sump heaters may be fitted to the engine sump to ensure that the engine is easy to start and able to take load more quickly. These are in the form of small heating pads and operate at a relatively low temperature so they do not require a thermostat.

Battery heaters may be fitted to the engine battery to ensure that the battery is maintained at an optimum operating temperature. This will ensure that the battery will be in a fully charged condition for generator set starting. These are in the form of a wrap around heating pad with an integral non-adjustable thermostat set at approximately 26°C (80°F).

Each of these heater types require a continuous 110/120 or 220/240 volt AC power source.

Control switches are not normally fitted but may be fitted as an additional option. With or without control switches, the heaters are automatically disconnected on engine start-up.

9.3.3 Meters/Gauges: When more information is required than that which is provided by the standard panels, the following meters or gauges may be fitted to the control panel:

- Kilowatt (kW) Meter to provide accurate readings of the load being supplied by the generator set. The meter is mounted on the control panel and the transducer is mounted inside the panel.
- Combined Tachometer and Frequency Meter to replace the standard frequency meter. This meter allows both engine speed in revolutions per minute (RPM) and output frequency to be indicated on the front panel.
- Lube Oil Temperature Gauge to monitor the lubricating oil temperature when the engine is operating. This is an electrical device powered by the generator set battery. The normal operating temperature should be approximately 90°-110°C (195°-230°F).
- Ammeter for Battery Trickle Charger to monitor the current flow to the battery. It is used to observe the charging current being supplied by the battery trickle charger. When the batteries are fully charged this current will be small (less than 5 Amps) but with a partially discharged battery this current may be as high as 10 Amps.

9.3.4 Speed/Voltage Control: Three controls may be fitted to adjust the speed or voltage of the generator set.

The speed adjust potentiometer can only be used when the engine is controlled by an electronic governor. Clockwise adjustment increases the speed of the engine and anti-clockwise adjustment decreases it. The potentiometer is fitted with a dial mechanism which allows the potentiometer to be locked at the desired setting.

A raise/lower switch may be fitted on the control panel to control the speed of engines with mechanical or hydraulic governors. The governor must also be fitted with a motor operator. A “spring return to off” switch is then used to raise or lower the speed.

The voltage adjust potentiometer allows minor adjustments of voltage to be made from the control panel. About 3% adjustment is possible.

9.3.5 Alarm Signaling: Three options may be fitted to the control panel to supplement the standard alarm indications of the alarm lamps:

- A panel mounted alarm siren is DC operated and will sound when an alarm condition is indicated. An Alarm Mute pushbutton is fitted on the panel to silence the siren.
- An audible alarm siren supplied loose is also DC powered and will sound when an alarm condition is indicated. It can be fitted at a convenient location. An Alarm Mute pushbutton is fitted on the panel to silence the siren.
- A set of volt free contacts for common alarm change over in the event of an alarm condition. These are for connection to an existing alarm system. These contacts remain in the “alarm” state until the control system is reset.

9.3.6 Remote Annunciator Panels: 8 or 16 channel remote annunciators may be fitted and connected to 4001 and 4001E Series Control Systems. These provide repeat indicators for the shutdown and alarm fault lamps on the control panel. They also include an audible alarm and alarm mute button. The connection is via a plug type terminal bar for easy installation.

Each channel is equipped with a LED that can display red, green or amber depending on the selection of the DIL switches. Each channel can also be selected to sound the audible alarm via a DIL switch.

Two further options may be fitted with the remote annunciators: A Normal/Run switch allows manual starting of
the set from the remote location and a Stop Pushbutton allows manual stopping.

9.3.7 X100 AMF Upgrade: When the generator set is installed to automatically provide standby power in the event of a mains failure, a load transfer switch is required. This switch transfers the load from the mains after a failure and puts the load on the operating generator set. After the mains are re-established, the load is transferred back to the mains.

To accomplish this, one option is to utilize a dedicated TC Series or TI Series Load Transfer Panel as discussed in Section 9.6. However, the X100 option provides this functionality in the control panel itself, so an independent transfer switch or a TX Series Load Transfer Panel can be used.

A 2001, 4001 or 4001E Series Panel fitted with the X100 option is often referred to as a 2100, 4100 or 4100E Series Panel, respectively.

The X100 upgrade adds a control P.C.B. to the control system as well as a static battery charger to maintain the generator set battery in a fully charged state. A 220/240 volt AC source is required to power the battery charger. The upgrade also adds a status display panel to the control panel as shown in Figure 9.5. This provides indication of Mains Available, Mains on Load, Generator Available and Generator on Load. A test switch is provided for maintenance.

Figure 9.5: Typical X100 Status Display Panel

Functionally, the X100 option uses a mains fail signal from the mains monitoring relay to start the generator set. This signal is provided by the transfer contactor (if so equipped) or by the optional PRM1, Electronic Mains Monitoring Relay. The "MAV" switch on the X100 P.C.B. enables acceptance of either a N/O or N/C signal (see Figure 9.6).

On receipt of the mains fail signal the Delay on Start timer (2MT) is energized. This timer avoids false engine starts due to momentary mains fluctuations. If the mains have not returned by the time 2MT has timed out then the mains contactor is opened and a start signal is given to the main control P.C.B. After the generator set is automatically started, the Delay on Transfer timer (AT) is activated to permit the generator set to stabilize before the standby contactor is closed. After AT is timed out, the standby contactor is closed, allowing the generator set to power the load.

On restoration of the mains power signaled by the mains monitoring relay, the Delay on Retransfer timer (1MT) is energized. 1MT allows a period of time to ensure that the mains supply is reliable prior to transferring the load back. When it is timed out the standby contactor is opened. Following the Dead Band Timer (DBT) timing out, the mains contactor will reclose. The DBT ensures that there is a definite delay between the standby contactor opening and the mains contactor closing. The Run On Timer (ROT) ensures that the generator set continues to run on no load to cool down before shutting down. The control system is then ready for the next mains failure.

The Test Switch mounted on the control panel allows 2 additional modes of operation:

"TEST 1" Test Off Load. This is used to start the generator set under automatic control but not to accept the load while mains power is available. The load transfer contactors do not operate.

"TEST 2" Test On Load. This simulates a full mains failure with the generator set starting up and taking the load even when mains power is available.

Two additional options may be fitted with X100:

PRM1 Electronic Mains Monitoring Relay - This relay is essential when an independent load transfer panel is not fitted with a mains monitoring relay or when a TX Series Load Transfer Panel is used.

PST1 Manual/Auto Retransfer Selector Circuit - This option, if fitted, enables the operator to manually control the timing of the retransfer of the load from the generator set to the restored mains supply. The controls comprise a Manual/Auto Retransfer Selector Switch and a Retransfer Button. On a mains failure, the generator set will start and accept load in the normal sequence. With the Retransfer Selector Switch in the "AUTO" position the load will be automatically retransferred back to the mains when available as described above. If the Retransfer Selector Switch is in the "MANUAL" position the retransfer timer is bypassed and, on restoration of the mains, the "Mains Available" indicator will illuminate but the generator set will continue to supply the load. When it is convenient the operator presses the Retransfer Button which causes the standby contactor immediately to open and, following the timing out of the Dead Band Timer, the mains(contactor to close, reconnecting the load to the mains. The generator set will continue to run for the cool down period before shutting down and resetting.

9.3.8 Digital Instrumentation Option: On certain generator sets a digital instrumentation option may be fitted. This factory fitted option replaces the analogue AC instruments and associated selector switches which are normally fitted on the control panel (voltmeter, frequency meter, ammeter).

All the instrumentation is embodied in one P.C.B. On the front of the control panel are 3 windows which show voltage, frequency and current respectively. For 3 phase generator sets only, below the voltmeter and ammeter displays are LED indicators set out in two triangular formations. These give indication of which phase voltage or current is being measured.

In the case of the voltmeter one LED illuminated indicates the phase to neutral voltage for that particular phase. If two LED’s are illuminated then the voltage shown is the phase to phase voltage for these two phases. Only one LED will be illuminated below the ammeter. This LED shows which phase the current display is indicating.

Stepping through the voltages and currents for monitoring purposes is achieved by pushing the "V-A" button. Each push cycles the voltage and current selection circuit. There are a total of 6 steps in the selection. If the V-A button is pressed after the 6th step it then returns back to the 1st selection and the cycle repeats.

<table>
<thead>
<tr>
<th>Step</th>
<th>Displayed Voltage</th>
<th>Displayed Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1 - Neutral</td>
<td>L1</td>
</tr>
<tr>
<td>2</td>
<td>L2 - Neutral</td>
<td>L2</td>
</tr>
<tr>
<td>3</td>
<td>L3 - Neutral</td>
<td>L3</td>
</tr>
<tr>
<td>4</td>
<td>L1 - L2</td>
<td>L1</td>
</tr>
<tr>
<td>5</td>
<td>L2 - L3</td>
<td>L2</td>
</tr>
<tr>
<td>6</td>
<td>L1 - L3</td>
<td>L3</td>
</tr>
</tbody>
</table>

Further operation of the V-A button repeats the cycle.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1MT: Delay on Retransfer Timer</td>
</tr>
<tr>
<td></td>
<td>Range: 160 seconds-28 minutes</td>
</tr>
<tr>
<td></td>
<td>Set: 160 seconds</td>
</tr>
<tr>
<td>2.</td>
<td>2MT: Delay on Start Timer</td>
</tr>
<tr>
<td></td>
<td>Range: 1-30 seconds</td>
</tr>
<tr>
<td></td>
<td>Set: 5 ± 1 second</td>
</tr>
<tr>
<td>3.</td>
<td>DBT: Dead Band Timer</td>
</tr>
<tr>
<td></td>
<td>Range: 0.1-5 seconds</td>
</tr>
<tr>
<td></td>
<td>Set: 0.1 second</td>
</tr>
<tr>
<td>4.</td>
<td>AT: Delay on Retransfer Timer</td>
</tr>
<tr>
<td></td>
<td>(Factory Set)</td>
</tr>
<tr>
<td>5.</td>
<td>ROT: Run on Timer (sets cool down period)</td>
</tr>
<tr>
<td></td>
<td>Range: 8-315 seconds</td>
</tr>
<tr>
<td></td>
<td>Set: 240 ± 15 seconds</td>
</tr>
<tr>
<td>6.</td>
<td>MAV: Switch selecting N/O or N/C</td>
</tr>
<tr>
<td></td>
<td>Mains Monitoring signal.</td>
</tr>
</tbody>
</table>

Figure 9.6: Layout of the X100 P.C.B.
9.4 Control System Fault Finding/Trouble Shooting Guide

<table>
<thead>
<tr>
<th>FAULT</th>
<th>SYMPTOM</th>
<th>REMEDY</th>
</tr>
</thead>
</table>
| **Engine Fails to Start**
(2001, 4001, or 4001E Series Only) | **Engine Does Not Crank when Start Signal Given, Either Manually Via Control Switch or Automatic-ally Via a Remote Signal** | 1. Check all Emergency Stop Pushbuttons are released (including any remote buttons). If no remote stop is used, ensure “Remote Stop” terminals are linked.
2. Check that Control Switch is not off.
3. Check no fault lamps illuminated. Reset, if required, after remedying indicated fault.
4. Check battery voltage on control panel. If voltage is not registering check fuse F5. If voltage is registering but is low then recharge the batteries with separate battery charger and reconnect to the set. (Ensure the Control Switch is off when disconnecting and reconnecting the battery leads.)
5. Check supply to slave solenoid on starter motor - connect a DC voltmeter between this connection and the battery negative terminal. Try starting the engine manually by turning the Control Switch to RUN. If the meter registers a voltage then the starter motor or solenoid is faulty and must be replaced. If no voltage registers, check wiring from panel for loose connections or broken/shorted wires.
6. If wiring is not damaged then replace the P.C.B. |
| **Engine Fails To Start**
(All control systems) | **Engine Cranks But Does Not Fire**
or
Engine Starts But Stops After 20 Seconds
(*FAIL TO START* Fault Lamp Illuminates on 2001, 4001 or 4001E Panels.) | 1. Check gas supply pressure.
2. Check wiring to the fuel control solenoid “FCS” and the voltage at the FCS.
3. Check fuses F1, F2, F3 on alternator side plate.
4. Check gas lines for obstructions or signs of damage.
5. Check voltage output of P.C.B. to FCS. If signal not present, Replace the P.C.B.
6. On 2001, 4001 or 4001E panels, once the fault has been rectified, clear the fault lamp by turning the Control Switch to STOP. |
| **Engine Stops Due to High Engine Temp.**
(or on some larger models due to Low Coolant Level)
(All control systems) | **“HIGH ENGINE TEMP” Fault Lamp Illuminates** | 1. Check engine was not overloaded.
2. Check radiator obstructions.
3. Check fan belt tension.
4. Check ambient temperature is within the design limits of the generator set.
5. After engine has cooled, check coolant level. Do not add large amounts of cold water to a hot engine as serious damage could result.
7. Once fault has been rectified, clear the fault lamp by turning the Key Switch to position “O” (Off) or turning the Control Switch to “STOP”, as appropriate.
8. Cool the engine by starting and running it off-load for 10 minutes with the circuit breaker off (handle down). |
| **Engine Stops Due to Low Oil Pressure**
(All control systems) | **“LOW OIL PRESSURE” Fault Lamp Illuminates** | 1. Check oil level.
2. Refer to Engine Manual.
3. Check oil pressure switch with test gauge. Replace if faulty.
4. Once fault has been rectified, clear the fault lamp by turning the Key Switch to position “O” (Off) or turning the Control Switch to “STOP”, as appropriate. |
<table>
<thead>
<tr>
<th>FAULT</th>
<th>SYMPTOM</th>
<th>REMEDY</th>
</tr>
</thead>
</table>
| Engine Stops Due to Overspeed (2001, 4001 or 4001E Series Only) | “OVERSPEED” Fault Lamp Illuminates | Note: The “OVERSPEED” fault lamp will also illuminate after the Emergency Stop Pushbutton has been depressed even though there has been no overspeed condition. The Emergency Stop Pushbutton and any remote stop buttons must be released before the fault can be cleared.
1. Check if governor speed setting lever has moved. Re-adjust if required.
2. If electronic governor is fitted check linkage for free movement. Adjust if required.
3. Refer to Engine Manual.
4. Replace the P.C.B.
5. Once fault has been rectified, clear the fault lamp by turning the Control Switch to “STOP”.

| Engine Stops Due to High Lube Oil Temp (Optional Shutdown - 2001, 4001 or 4001E Series Only) | “HIGH LUBE OIL TEMP” Fault Lamp Illuminates | 1. See trouble shooting guide on “Engine Stops Due To High Engine Temp” to see if cooling system is operating efficiently.
2. After radiator has cooled, check coolant level.
3. Check oil level.
4. Ensure proper maintenance procedures have been carried out.
5. Refer to Engine Manual.
6. Once fault has been rectified, clear the fault lamp by turning the Control Switch to “STOP”.

| Engine Stops Due to Low Coolant Level (Optional Shutdown - 2001, 4001 or 4001E Series Only) | “LOW COOLANT LEVEL” Fault Lamp Illuminates | 1. Allow engine to cool.
2. Check coolant level. Fill as required with correct coolant mixture. Do not add large amounts of cold water to a hot engine as serious damage could result.
3. Check radiator, engine and pipework for leaks. Repair as necessary.
4. Once fault has been rectified, clear the fault lamp by turning the Control Switch to “STOP”.

| Engine Stops Due to Low Gas Pressure (Optional Shutdown - 2001, 4001 or 4001E Series Only) | “LOW GAS PRESSURE” Fault Lamp Illuminates | 1. If the gas is supplied from a gas storage tank check storage tank gas pressure.
2. Check that all shut-off valves in the supply system are open.
3. Check for gas leaks in the supply system.
4. Consult with your local gas supplier.

| Engine Stops Due to Underspeed (Optional Shutdown - 2001, 4001 or 4001E Series Only) | “UNDERSPEED” Fault Lamp Illuminates | 1. Ensure engine has not been overloaded.
2. Ensure there is an adequate supply of fuel to the engine.
3. Check if governor speed setting lever has moved. Re-adjust if required.
4. If electronic governor is fitted check linkage for free movement. Adjust if required.
5. Clear the fault by turning the Control Switch to “STOP” and restart the engine.
6. Ensure alternator is running at the correct voltage by checking on the panel meters.
7. With engine running set correct speed on the engine governor control.
8. Refer to the Engine Manual.
<table>
<thead>
<tr>
<th>FAULT</th>
<th>SYMPTOM</th>
<th>REMEDY</th>
</tr>
</thead>
</table>
| Engine Stops Due to Overvoltage | “OVERVOLTAGE” Fault Lamp Illuminates | 1. Disconnect the alternator from the load by turning off the circuit breaker (handle down), reset the fault by turning the Control Switch to “STOP” and restart engine.
2. Check voltage on panel meters. If voltage is normal, ensure that the load is non-capacitive (power factor correction equipment may inadvertently lead to a capacitive load).
3. If voltage remains high and can not be adjusted to the normal level using the voltage adjust potentiometer, if fitted, then refer to the Alternator Manual. |
| Engine Stops Due to Under-voltage | “UNDERVOLTAGE” Fault Lamp Illuminates | 1. Disconnect the alternator from the load by turning off the circuit breaker (handle down), reset the fault by turning the Control Switch to “STOP” and restart engine.
2. Check voltage on panel meters. If voltage is normal check the load characteristics (i.e. ensure not over loaded).
3. If voltage remains low and can not be adjusted to the normal level using the voltage adjust potentiometer, if fitted, then check the voltage at the alternator terminals with an independent meter. If voltage is correct check wiring.
4 Check AVR.
5. Refer to Alternator Manual. |
| Engine Stops Due to Overvoltage /Under-voltage | “OVERVOLTAGE/UNDER-VOLTAGE” Fault Lamp Illuminates | 1. Disconnect the alternator from the load by turning off the circuit breaker (handle down), reset the fault by turning the Control Switch to “STOP” and restart engine.
2. Check voltage on panel meters. If voltage is normal check the load characteristics (i.e. not capacitive and not over loaded).
3. If voltage remains high or low and can not be adjusted to the normal level using the voltage adjust potentiometer, if fitted, then check the voltage at the alternator terminals with an independent meter. If voltage is correct check wiring.
4 Check AVR.
5. Refer to Alternator Manual. |
| Engine Stops Due to Earth Fault | “EARTH FAULT” Fault Lamp Illuminates | 1. Check all cable and wiring for bad connections or shorts to earth.
2. Check alternator windings - refer to Alternator Manual.
3. Once the fault has been rectified, clear the fault lamp by turning the Control Switch to “STOP”. |
| Engine Stops Due to Earth Leakage | “EARTH LEAKAGE” Fault Lamp Illuminates | 1. Check outgoing cable and wiring for faults.
2. Do not restart the generator set until fault has been found.
3. Once the fault has been rectified, clear the fault lamp by turning the Control Switch to “STOP”. |
| Alarm for Low Battery Voltage | “LOW BATTERY VOLTAGE” Alarm Lamp Illuminates | 1. Check battery voltage at least 12 volts for a 12 volt system or at least 24 volts for a 24 volt system.
2. If voltage is low and generator set is not running then recharge the battery by connecting a separate battery charger to the disconnected battery or run the engine.
3. If voltage is low and generator set is running then the battery charging alternator is not charging. Stop the set and check the fan belt tension.
4. If fan belt tension is correct then check battery charging alternator - refer to Engine Manual.
5. If battery does not hold a charge then replace battery.
6. Once the cause of the alarm has been rectified, clear the alarm lamp by pressing the “LAMP TEST” button. |
| Alarm for Not in Automatic Mode | “NOT IN AUTO MODE” Alarm Lamp Illuminates | 1. Check Control Switch is in “AUTO”.
2. Check Emergency Stop Pushbuttons are not pressed.
3. Check Circuit Breaker is on (handle up).
4. Once the cause of the alarm has been rectified, clear the alarm lamp by pressing the “LAMP TEST” button. |
<table>
<thead>
<tr>
<th>FAULT</th>
<th>SYMPTOM</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4001E Series Only)</td>
<td>Illuminates</td>
<td>2. Check radiator and ventilation for obstructions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check ambient temperature is within the design limits of the generator set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. If the above are okay, reduce load and stop the set as soon as possible. Check the fan belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tension.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Refer to Engine Manual.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Once the cause of the alarm has been rectified, clear the alarm lamp by pressing the “LAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEST” button.</td>
</tr>
<tr>
<td>Alarm for Approaching Low Oil Pressure</td>
<td>“APPROACHING LOW OIL PRESSURE” Alarm Lamp</td>
<td>1. Check oil level with engine stopped as soon as possible.</td>
</tr>
<tr>
<td>(4001E Series Only)</td>
<td>Illuminates</td>
<td>2. Refer to Engine Manual.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Once the cause of the alarm has been rectified, clear the alarm lamp by pressing the “LAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEST” button.</td>
</tr>
<tr>
<td>Alarm for Battery Charger Failure</td>
<td>“BATTERY CHARGER FAILURE” Alarm Lamp</td>
<td>1. Check trickle charger is switched on and producing power.</td>
</tr>
<tr>
<td>(4001E Series Only)</td>
<td>Illuminates</td>
<td>2. Carry out checks as per low battery voltage alarm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Once the cause of the alarm has been rectified, clear the alarm lamp by pressing the “LAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEST” button.</td>
</tr>
<tr>
<td>Alarm for Low Gas Pressure</td>
<td>“LOW GAS PRESSURE” Alarm Lamp Illuminates</td>
<td>1. If the gas is supplied from a gas storage tank check storage tank gas pressure.</td>
</tr>
<tr>
<td>(Optional Alarm - 2001, 4001 or 4001E</td>
<td></td>
<td>2. Check that all shut-off valves in the supply system are open.</td>
</tr>
<tr>
<td>Series Only)</td>
<td></td>
<td>3. Check for gas leaks in the supply system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Consult with your local gas supplier.</td>
</tr>
<tr>
<td>Alarm for Low Coolant Temp.</td>
<td>“LOW COOLANT TEMP” Alarm Lamp Illuminates</td>
<td>1. Check that the immersion heaters are switched on and are operating.</td>
</tr>
<tr>
<td>(Optional Alarm - 2001, 4001 or 4001E Series</td>
<td></td>
<td>2. Once the cause of the alarm has been rectified, clear the alarm lamp by pressing the “LAMP</td>
</tr>
<tr>
<td>Only)</td>
<td></td>
<td>TEST” button.</td>
</tr>
<tr>
<td>No Voltage Produced When Generator Set is</td>
<td>No Voltage On AC Voltmeter</td>
<td>1. Check voltmeter selector switch is not in the “OFF” position.</td>
</tr>
<tr>
<td>Running (All control systems)</td>
<td></td>
<td>2. Check fuses F1, F2, and F3, usually located on the alternator terminal box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check voltage at alternator terminals with an independent meter. If voltage is correct check</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wiring between alternator and panel. Check voltmeter. Replace if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Check AVR and rotating diodes. Refer to Alternator Manual for details.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Check engine speed is correct.</td>
</tr>
<tr>
<td>Generator Set Does Not Go On Load</td>
<td>Generator Set is Running but the Load is Not</td>
<td>1. Check circuit breaker is “ON” (handle up).</td>
</tr>
<tr>
<td>(All control systems)</td>
<td>Being Powered</td>
<td>2. Check generator set is producing AC voltage. If not, see fault above.</td>
</tr>
<tr>
<td>Generator Set Does Not Stop Manually</td>
<td>Generator Set Continues Running After Being</td>
<td>1. Check Key Switch or Control Switch position, as appropriate.</td>
</tr>
<tr>
<td>(All control systems)</td>
<td>Switched Off</td>
<td>2. Check fuel control solenoid (FCS). Replace if necessary.</td>
</tr>
<tr>
<td>Generator Set Does Not Stop When In Auto</td>
<td>Generator Set Does Not Stop After Remote</td>
<td>Note: On 4001 and 4001E Series Control Systems the generator set does not stop immediately on</td>
</tr>
<tr>
<td>Mode (2001, 4001 or 4001E Series Only)</td>
<td>Start Signal is Removed</td>
<td>removal of the remote start signal. Removal of this signal first initiates the cool down period.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Wait 5 minutes to ensure cool down period has elapsed (4001 and 4001E Series Control Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check that generator set stops when the Emergency Stop Pushbutton is depressed or the Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch is turned off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. If the set does not stop as in step 2 above then check the fuel control solenoid (FCS).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace if necessary.</td>
</tr>
</tbody>
</table>
9.5 Load Transfer Panels

When the generator set is installed to automatically provide standby power in the event of mains failure, a load transfer panel is required. This transfer panel is designed to sense when the mains have failed, signal the generator set to start, switch the load from the failed mains to the generator set and then switch it back after the mains are re-established. See Figure 9.7.

![Diagram of a Load Transfer Panel](image)

Figure 9.7: Function of a Load Transfer Panel

There are three standard ranges of Load Transfer Panels: The TI Series Intelligent Transfer Panels, the TC Series Compact Transfer Panels and the TX Series Panels (for use with Option X100 see Section 9.4.9).

9.5.1 TI Intelligent Load Transfer Panel: The TI Intelligent Load Transfer Panel is designed to work with the Autostart Control Systems (2001, 4001, and 4001E Series) to form an automatic mains failure system. Only a two wire control interconnection is necessary between the generator set control panel and the TI panel making the installation very simple.

The control system consists of two Printed Circuit Boards (P.C.B.’s), control switches, a status panel and the contactors. The TI P.C.B. (see Figure 9.11) controls all the detection and monitoring circuits. The ATS Fuseboard P.C.B. (see Figure 9.12) holds all the fuses for all the functions of the TI P.C.B. and associated contactors. Both P.C.B.’s are mounted on the back of a hinged drop down door which is on the front of the transfer panel.

Status Panel: The front of the door has the status panel and main control switch. This status panel has four indicator lamps as shown in Figure 9.8. They are “Mains Available” (amber), “Mains on Load” (green), “Generator on Load” (red), and “Generator Available” (amber). Pressing the Lamp Test Button located below these indicator lamps will illuminate them for testing.

Controls: The main control switch on the front panel has three positions:

- AUTOMATIC MODE - The normal position for automatic operation.
- TEST WITHOUT LOAD - For testing the generator set without connecting the load.
- TEST WITH LOAD - For testing the generator set with the load connected.

Functional Description:

The TI Series Load Transfer Panel operates as follows:

- With the mains supplying electrical power to the load, the “Mains Available” and “Mains on Load” Status Lamps will be illuminated. These lamps indicate that the mains supply voltage level is above the Mains Voltage Set point (MVS) on the P.C.B. and that the load is connected to the mains supply. Potentiometer MVS is factory set at the voltage trip point for all three phases.

- When the mains voltage on any of the 3 phases drops below the trip level MVS, both the “Mains Available” and “Mains on Load” status lamps extinguish. The Delay on Start timer (2MT) is energized. This timer avoids false engine starts due to momentary mains fluctuations. If the mains have not returned by the time 2MT has timed out then the mains contactor is opened and a start signal is sent to the generator set control panel.

- Once the generator set has started and is producing voltage the “Generator Available” status lamp is illuminated and the Delay on Transfer Timer (AT) is enabled. This timer permits alternator output to stabilize before the standby contactor is closed. Once AT has timed out, and as long as the generator set voltage is above the Generator Voltage Set point (GVS), then the standby contactor is closed. This allows the generator set to power the load. The “Generator on Load” status lamp will be illuminated at this time.

- On restoration of mains power above the trip point MVS, the “Mains Available” status lamp will illuminate and the Delay on Retransfer Timer (1MT) will be energized. This timer allows a period of time to ensure that the mains supply is reliable before transferring the load back. If the mains voltage drops below MVS at any time during this period then 1MT will be reset and not restarted until the mains voltage again goes above MVS.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MVS: Mains Voltage Set (Factory Set)</td>
</tr>
<tr>
<td>2.</td>
<td>GVS: Generator Voltage Set (Factory Set)</td>
</tr>
<tr>
<td>3.</td>
<td>LINK 3: Operating Voltage Range Select</td>
</tr>
<tr>
<td>4.</td>
<td>AT: Delay on Transfer Timer (Factory Set)</td>
</tr>
<tr>
<td>5.</td>
<td>ROT: Run on Timer (cool down period) Range: 23-315 seconds Set: 240 ± 15 seconds</td>
</tr>
<tr>
<td>6.</td>
<td>2MT: Delay on Start Timer Range: 1-25 seconds Set: 5 ± 1 second</td>
</tr>
<tr>
<td>7.</td>
<td>LINK 2: Operating Voltage Range Select</td>
</tr>
<tr>
<td>8.</td>
<td>LINK 1: Remove for Manual Retransfer Operation</td>
</tr>
<tr>
<td>9.</td>
<td>1MT: Delay on Retransfer Timer Range: 160 seconds-28 minutes Set: 160 seconds</td>
</tr>
</tbody>
</table>

Figure 9.9: Layout of TI Series Load Transfer Panel P.C.B.

Figure 9.10 Layout of ATS Fuseboard
After 1MT times out, the standby contactor is opened and the “Generator on Load” status lamp is extinguished. The mains contactor is then closed and the “Mains on Load” status lamp is illuminated. The load is now powered by the mains supply. The Run on Timer (ROT) is also energized at this point to allow the generator set to continue running and cool down at no load before stopping. After ROT times out the start signal is removed and the generator set automatically shuts down. The “Generator Available” status lamp extinguishes.

Configuring the TI P.C.B. for Different Supply Voltages:
The TI P.C.B. operates in most systems from 190 volts to 480 volts phase to phase, 50 and 60 Hz and both single and 3 phases. Only a qualified technician should reconfigure the TI P.C.B. by moving links on the P.C.B. and wiring looms in addition to fitting additional fuses. Procedures for these changes are available from the factory.

Adjustment of MVS and GVS: These potentiometers control the trip points for the mains and generator voltage respectively. They are usually both set to the same values. These potentiometers are multi-turn type. Either of two types may be fitted: round types have 4 turns, rectangular types have 15 turns.

It is possible for a qualified technician to reset these levels on site. Procedures for resetting these potentiometers are available from the factory.

Manual Retransfer Option: If fitted, this allows the operator to manually control the timing of the retransfer of the load from the generator set to the restored mains supply. The controls comprise a Manual/Auto Retransfer Selector Switch and a Retransfer Button. This option connects to the 4 pin connector EC12 on the TI P.C.B.

With the Retransfer Selector Switch in Manual or Auto, on mains failure the generator set will start and accept load in the normal sequence. With the switch in Auto, the load will be automatically retransferred back to the mains when available as described above.

With the Retransfer Selector Switch in Manual, the retransfer timer is bypassed and, on restoration of the mains, the “Mains Available” indicator will illuminate but the generator will continue to supply the load. When it is convenient for the retransfer to take place, the operator presses the Retransfer Button which causes the standby contactor to open and the mains contactor to close. This reconnects the load to the mains.

The set will continue to run for the cool down period before automatically shutting down and resetting.

Optional Remote Status Indicating Lamps: If fitted, this option allows a remote indication of the status lamps that are mounted on the TI panel. A 10 way ribbon cable connected to connector EC11 on the TI P.C.B. sends the appropriate signals to a matching status display P.C.B.

9.5.2 TC Compact Load Transfer Panel: The TC Compact Load Transfer Panel is designed to work with the Autostart Control Systems (2001, 4001, and 4001E Series) to form an automatic mains failure system. Only a two wire control interconnection is necessary between the generator set control panel and the TC panel making the installation very simple.

The control system consists of a P.C.B., control switch, a status panel and contactors. The P.C.B. and fuses are mounted on a removable access cover, and for ease of installation all the connections to the P.C.B. and fuses are by internal multi-pin plugs and sockets (see Figure 9.11).

Status Panel and Controls: The status panel has two indicator lamps. They show that the load is either connected to the mains supply or to the generator set. The controls consist of a Mode Selector Switch with three positions:

- AUTOMATIC MODE - The normal position for automatic operation.
- TEST WITHOUT LOAD - For testing the generator set without connecting the load.
- TEST WITH LOAD - For testing the generator set with the load connected.

Functional Description: With the mains supplying electrical power to the load, the “Mains Supply” status lamp will be illuminated. When the mains fail as indicated by the Mains Voltage Sensing Relay, the mains contactor is opened and a start signal is sent to the generator set control panel. Once the generator set is operating and producing voltage the standby contactor is closed and the generator set supplies the load. The “Generator Supply” status lamp will be illuminated instead of the “Mains Supply” lamp.

Figure 9.11: Layout of TC Series Load Transfer Panel P.C.B.
On restoration of mains power the standby contactor will open and the mains contactor will close. The mains will be supplying the load so the “Mains Supply” lamp will come on. The start signal will also be removed allowing the generator set to shutdown.

9.5.3 TX Load Transfer Panel: The TX Load Transfer Panel is designed for use with the X100 Option fitted to one of the Autostart Control Panels (2100, 4100 and 4100E) to form an automatic mains failure system. The TX Panel contains the contactors which switch the load between the mains supply and the generator set. The electronics to control the load transfer are contained in the X100 P.C.B. which is in the generator set control panel (see Section 9.3.7). Typically 15 wires are connected between the generator set and the TX panel.

The Status Panel has 3 indicator lights. They are “Mains On Load”, “Mains Available” and “Generator On Load”.

9.6 Engine Interface Module Description

The Engine Interface Module is a sealed, engine mounted module that provides switching relays for the Starter Motor Solenoid and Fuel Solenoid. Each of these circuits is protected with individual fuses mounted in the module. Individual LED’s illuminate when each circuit is energized. This module is mounted on the engine with anti-vibration mounts and is easily connected to the engine via loom plugs. The fuses are automotive type. Use of the EIM means that heavy currents such as Fuel Solenoid power no longer go through the control panel enabling individual protection of each of the circuits. In addition to this the LED’s will greatly aid in fault finding.

9.6.1 Functional Description: There are three versions of the Engine Interface Module available - the 12 volt EIM SR, the 12 volt EIM Plus and the 24 volt EIM Plus.

The EIM SR is the basic level module that provides all the switching functionality. The EIM Plus provides the same functionality as the EIM SR plus the additional feature of Overspeed Sensing and an Overspeed Trip Adjuster. A magnetic pick-up on the engine flywheel housing provides the speed signal to the EIM Plus. When an overspeed situation is sensed, the EIM Plus signals the 2001, 4001 or 4001E generator set control panel to stop the engine. The Overspeed Trip Point can be easily set-up for 10% above the normal operating speed.

The overspeed feature on the EIM Plus, including the magnetic pickup is mandatory for all the Autostart control panels (2001, 4001 and 4001E). All generator sets above 150 kVA (with 24 volt engine electrical systems) are supplied with the EIM Plus and magnetic pickup as standard.

Status Indication: LED’s on the module correspond to the Starter Motor Solenoid supply and the Fuel Control Solenoid supply. Each illuminates to show that the indicated circuit is energized. A third LED (only operational on the EIM Plus) is used to set-up the Overspeed Trip Point.

Starter Motor Solenoid (EIM SR): When the Keyswitch is turned to start, a relay in the module is energized providing power to the Starter Motor Solenoid. When the Keyswitch is released the relay is de-energized, stopping the starter motor.

Starter Motor Solenoid (EIM Plus): During automatic cranking the module receives a signal from the magnetic pick-up. When the signal rises above 1090 Hz, the starter motor is disengaged and the EIM Plus switches a zero volt signal to the generator set control panel to indicate that the engine is running.

Should the crank speed be less than 12 Hz, the module will only allow a crank of 0.6 seconds.

If the engine speed falls below 350 Hz (i.e. the engine has stopped) the EIM Plus will allow cranking only after a 5 second delay (lockout) which compliments the generator set control panel’s 3 attempt crank.

Fuel Control Solenoid: The generator set control panel energizes a relay in the module that provides power to the Fuel Control Solenoid allowing fuel flow to the engine.

Overspeed Signal (EIM Plus only): The EIM Plus monitors the speed signal from the magnetic pick-up. If the engine speed rises above a certain pre-settable value, the module sends a zero volt signal to the generator set control panel to activate the Overspeed Fault circuitry.

The Overspeed Set Point is factory set at 55Hz for 50Hz sets and 66Hz for 60Hz sets. This can be adjusted using the adjustment screw accessed through the hole beside the Overspeed Set-Up LED. While the engine is running at the rated speed (1500 rpm for 50Hz or 1800 rpm for 60Hz) the adjustment screw should be adjusted until the Overspeed Set-Up LED just goes out. This sets the overspeed value at 10% above the speed at which the generator set is operating.

Safety “Relay” Feature: The EIM SR and EIM Plus provide a safety check for any damaged contacts (i.e. welded contacts) using a “safety” relay. When the emergency stop pushbutton on the generator set control panel is pushed the EIM module automatically checks Fuel Control Solenoid and Starter Motor Solenoid to see if they are welded shut. A dimly lit LED on the module indicates the contacts are damaged and the module should be replaced.

9.7 Output Circuit Breaker Description

The alternator output circuit breaker is a molded case circuit breaker (MCCB/MCCB) of sufficient rating for the generator set output. Electrical output is switchable through this device, with “ON” being indicated by the handle being up. The breaker will carry its rated current continuously but will trip to mid-position if the rating on any one phase is exceeded for a period depending on the percentage overload and the circuit breaker characteristics. The breaker must then be switched “OFF” (handle down) before reclosing.
10. BATTERY DESCRIPTION AND MAINTENANCE

10.1 Battery Theory

10.1.1 General: The battery is an assembly of "cells" containing a number of plates, immersed in an electrically conductive fluid. The electrical energy from the battery comes from chemical reactions taking place within the cells. These reactions are reversible which means that the battery can be repeatedly charged and discharged.

10.1.2 Electrolyte: The electrically conductive fluid, called electrolyte, in a lead-acid battery is a diluted sulfuric acid solution. It aids the chemical reactions occurring at the plates and it acts as the carrier for the electrical current.

10.1.3 Specific Gravity: Specific gravity is a unit of measurement for determining the sulfuric acid content of the electrolyte which compares the weight of the electrolyte compared to the weight of pure water. At 25°C (77°F) a fully charged battery should have a specific gravity of 1.270. The lower the concentration of sulfuric acid, the lower the specific gravity.

As the battery is discharged, the chemical reactions lower the specific gravity of the electrolyte. Therefore, this measurement can be used as a guide to the state of charge of the battery.

10.1.4 Hydrometer: Specific gravity can be measured directly using a hydrometer. This device is a bulb-type syringe which will extract electrolyte from a cell in the battery. A glass float in the hydrometer barrel is calibrated to indicate the specific gravity.

Hydrometer readings should not be taken immediately after water is added to the cell. The water must be thoroughly mixed with the underlying electrolyte, by charging, before hydrometer readings are reliable. Also, if the reading is being taken immediately after the battery has been subjected to prolonged cranking, the reading will be higher than the true value. The water formed in the plates during the rapid discharge will not have had time to mix with the electrolyte above the plates.

10.1.5 High or Low Temperatures: In tropical climates (frequently above 32°C (90°F)) a fully charged battery with a lower specific gravity of 1.240 is used. This milder strength electrolyte increases the service life of the battery. If subjected to low temperatures the battery will not have the same cranking power due to the lower concentration of sulfuric acid, but this situation should not occur in tropical climates.

Batteries prepared for service in extremely cold weather use stronger electrolyte. In some instances specific gravity's of 1.300 are used. The cold cranking performance increases as the specific gravity increases.

10.1.6 Temperature Correction: The hydrometer is calibrated to indicate properly for a specified electrolyte temperature, often 25°C (77°F). For temperatures higher or lower than the reference temperature, a correction must be made. For each 5.5°C (10°F) above the reference add 0.004 to the reading. For each 5.5°C (10°F) below the reference, subtract 0.004 from the reading.

10.2 Battery Maintenance

WARNING:

! Wear an acid resistant apron and face shield or goggles when servicing the battery. If electrolyte is spilled on skin or clothing, flush immediately with large quantities of water.

10.2.1 Filling: The battery will often be shipped dry. Premixed electrolyte of the correct specific gravity will have to be added.

10.2.2 Initial Charging: Within 1 hour of filling, the battery must be charged for 4 hours at the current indicated below. This will ensure that the acid is sufficiently mixed within the battery. Failure to give this charge at this time may impair the capacity of the battery.

<table>
<thead>
<tr>
<th>Battery Charge</th>
<th>Reference Current (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E017</td>
<td>9</td>
</tr>
<tr>
<td>E312</td>
<td>14</td>
</tr>
<tr>
<td>E324</td>
<td>20</td>
</tr>
</tbody>
</table>

The above 4 hour charge period may need to be extended as follows: to 8 hours if the battery has been stored for 3 months or more at temperatures in excess of 30°C (86°F) or humidity above 80%; to 12 hours if the storage has exceeded 1 year.

If the charger output is not sufficient then a lower current, which should not be less than 1/3 of that given above, may be used but the time increased in proportion (8 hours at 7 Amps instead of 4 hours at 14 Amps).

At the end of the charging period, the electrolyte levels should be checked and restored if necessary by addition of sulfuric acid electrolyte at the correct specific gravity. The vents should then be replaced.

10.2.3 Topping Up: Normal operation and charging of the battery will cause some of the water to evaporate. This will require occasional topping up of the battery.

Clean the battery first to avoid contamination and remove the vent plugs. Add distilled water, until the level is 8 mm (5/16 inch) above the separators. Replace vent plugs.

10.3 Charging the Battery

WARNING:

! Always ensure battery charging is carried out in a well ventilated area away from sparks and naked flames.

! Never operate a battery charger where unprotected from rain or snow. The charger should never be used near water.

! Always switch the charger off prior to disconnecting the battery.

The engine driven alternator and or a static battery charger, if fitted, should maintain the batteries in a charged state. However, if the battery has recently been filled or recharging is required the battery may be disconnected from the generator set and connected to an external battery charger.

10.3.1 Charger and Battery Connections: The battery charger should be connected to a suitable mains supply (13 Amps minimum) using a plug connected as indicated below.

<table>
<thead>
<tr>
<th>Mains Connection</th>
<th>Live</th>
<th>Neutral</th>
<th>Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live</td>
<td>Brown Lead</td>
<td>Blue Lead</td>
<td>Green/Yellow Lead</td>
</tr>
</tbody>
</table>
Also ensure that the battery terminals are connected as indicated below:

Battery Connection
Positive (+) Terminal Red Lead
Negative (-) Terminal Black Lead

Connect the batteries to the charger as per the following chart:

10.3.2 Charger Operation:
After the charger has been connected to the mains and the battery connected to the charger as indicated above, the charging procedure can be followed:

Remove the battery filler caps or vent cover during charging. Check electrolyte levels and adjust as necessary using distilled water.

Switch on the charger and observe rate of charge for normal operation. The charging rate depends on the Ampere-hour capacity of the battery, the condition of the battery and the present level of charge. The charging current will decrease as the battery starts charging and will continue to decrease as the battery voltage rises.

To check the state of charge, allow the battery to settle for a short period with the charger switched off. Then check the specific gravity of each cell using a hydrometer.

The battery charger should not overcharge or damage the batteries. High temperature, however, can damage the batteries. Care should be taken when charging batteries, especially in hot climates, that the battery temperature never rises above 45°C (113°F).

10.4 Battery Charging System Fault Finding/Trouble Shooting Chart

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Fault</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Charging Current</td>
<td>Incorrect or Bad Battery Connections</td>
<td>1. Check connections and clean terminals.</td>
</tr>
<tr>
<td></td>
<td>Old or Sulfated Battery with Very Low Terminal Voltage</td>
<td>1. Remove battery and charge on specialist equipment.</td>
</tr>
<tr>
<td></td>
<td>No Mains Supply</td>
<td>1. Check mains supply to charger.</td>
</tr>
<tr>
<td></td>
<td>Blown Mains Fuse</td>
<td>1. Replace fuse.</td>
</tr>
<tr>
<td></td>
<td>Faulty Diode Rectifier Unit</td>
<td>1. Remove output connections from each rectifier unit and test for output current into a known load.</td>
</tr>
<tr>
<td></td>
<td>No Charging Current Shown on Indicator</td>
<td>Faulty Indicator</td>
</tr>
<tr>
<td>Charging Rate Too Low</td>
<td>Low Mains Voltage</td>
<td>1. Check mains voltage supply.</td>
</tr>
<tr>
<td></td>
<td>Incorrect Mains Supply Tapping</td>
<td>1. Check the mains supply tapping with the supply voltage.</td>
</tr>
<tr>
<td></td>
<td>Loose Heavy Current Connections</td>
<td>1. Check and tighten connections if necessary.</td>
</tr>
<tr>
<td>Charging Clamps Get Hot</td>
<td>Faulty Connections to the Battery</td>
<td>1. Clean terminals and reconnect.</td>
</tr>
<tr>
<td></td>
<td>Loose Screws in Clamps</td>
<td>1. Clean and tighten screws in charging clamps.</td>
</tr>
<tr>
<td>Mains Supply Fuse Blows Repeatedly</td>
<td>Incorrect Fuse Rating</td>
<td>1. Replace with correct fuse.</td>
</tr>
<tr>
<td></td>
<td>Wiring Short</td>
<td>1. Check and remake all connections.</td>
</tr>
<tr>
<td>Charging Rate Does Not Taper</td>
<td>Old or Damaged Battery</td>
<td>1. Charger is not faulty - battery will not rise to full charge voltage. Test battery and replace as necessary.</td>
</tr>
</tbody>
</table>
10.5 Jump Starting Procedures

WARNING:

Do not attempt to jump start a battery if the electrolyte is frozen or slushy. Bring the batteries up to at least 5°C (41°F) before attempting a jump start.

If the generator set battery has insufficient charge to start the generator set, a "jump start" from another battery is possible. Use the following procedures:

1. Remove all vent caps from the battery or batteries in the generator set. Do not permit dirt or foreign matter to enter the open cells.
2. Check the battery fluid level. If low add distilled water to bring it to the proper level.
3. Attempt to jump start only with a vehicle with a negative ground electrical system with the same voltage and that is equipped with a battery or batteries of comparable size or larger than those supplied with the generator set.
4. Bring the starting vehicle along side the generator set but do not allow metal to metal contact.
5. Place the starting vehicle in neutral or park, turn off all non-essential accessory loads and start the engine.
6. Connect one end of clean, heavy duty jumper cables to the positive battery terminal of the starting vehicle. If jump starting a 24 volt generator set and the starting vehicle is provided with two 12 volt batteries, then connect the jumper cable to the positive terminal of the battery that is not grounded.
7. Connect the other end of the same jumper cable to the positive terminal of the battery in the generator set. When jump starting 24 volt generator sets, connect to the positive terminal of the battery that is not grounded.
8. Connect one end of the other jumper cable to the grounded negative terminal of the battery in the starting vehicle. If jump starting a 24 volt generator set and the starting vehicle is provided with two 12 volt batteries, then connect the jumper cable to the negative terminal of the battery that is grounded.
9. Check the connections. Do not attempt to start a 24 volt generator set with one 12 volt battery in the starting vehicle. Do not apply 24 volts to one 12 volt battery in the generator set.
10. Connect the other end of this second jumper cable to a clean portion of the generator set engine block, away from fuel lines, the crank case breather opening or the battery.
11. With the engine of the starting vehicle running, start the generator set in accordance with the normal procedures. Avoid prolonged cranking.
12. Allow the generator set to warm up. When the set is warm and operating smoothly at normal RPM, disconnect the negative jumper cable from the engine block on the generator set. Then disconnect the other end of the same cable from the battery in the starting vehicle. Then disconnect the other cable for the positive terminal of the generator set battery and finally disconnect the cable from the starting vehicle battery.
13. Replace vent caps.
HAZARD LABEL LEGEND

Some or all of these hazard warning labels will appear on your generator set:

- **DO NOT TAMPER WITH UNLESS YOU HAVE READ THE INSTRUCTION MANUAL**
- **USE FAN GUARDS**
- **ELECTRIC SHOCK HAZARD**
- **HOT EXHAUST GAS**
- **LOW OVERHEAD OBJECTS**
- **RATED SPEED 80 km/h**
- **WEAR EAR PROTECTION**
- **NO NAKED FLAMES**
- **HOT SURFACES**
- **EMERGENCY/PANIC EXIT**
- **ELECTRIC TERMINALS**
- **PROTECTIVE EARTH (GROUND)**
- **ENGINE COOLANT**
- **ENGINE COOLANT PRESSURE**